

Associations between the Classroom Learning Environment and Student Engagement in Learning 1: A Rasch Model Approach

Abstract

This report is about one of two phases in an investigation into associations between student engagement in classroom learning and the classroom learning environment. Both phases applied the same instrumentation to the same sample. The difference between the phases was in the measurement approach applied. This report is about application of the Rasch model to analyse the data; the second report (Associations between the Classroom Learning Environment and Student Engagement in Learning 2: A Structural Equation Modeling Approach), is about Structural Equation Modeling application.

Student engagement in learning has become an important consideration in research into learning environments and the design of instruction. This study applied a novel model of engagement in classroom learning based on flow theory and bio-ecological frameworks. The objectives were to construct a composite measure of student engagement in classroom learning and the classroom learning environment. Then, to compare student scores for variables and groups of students (e.g. boys and girls). An 85-item scale was created and data from administering the scale to 1760 secondary school students were tested for fit to the Rasch rating scale measurement model. Data on engagement in classroom learning and the classroom learning environment were able to be plotted on one interval scale suggesting an underlying common construct. Also, there were statistically significant differences in overall student scores between country and city students, boys and girls, year cohorts, curriculum areas, and favourite and non-favourite subjects.

This research was funded by a large-scale Linkage grant from the Australian Research Council.

Objectives

This study was part of a large-scale Australian Research Council project that investigated the participation and engagement of Western Australian secondary school students. It sought to collect data from students throughout Western Australia studying different subjects at different year levels. Specifically, to:

(a) Measure student engagement in classroom learning and elements of the classroom learning environment;

(b) Plot measures of engagement and learning environment variables on the same linear scale; and (c) Examine the effect of student membership of groups (e.g. gender, year of study), on variance in

engagement and learning environment scores.

Theoretical framework

The related phenomena of student engagement and learning environments have been the subject of much theorising and empirical investigation for many decades. The complexity of engagement was noted by Glanville and Wildhagen (2007, p. 1021), "... engagement is a general concept that includes many specific behaviours and attitudes" and it "... encompasses a range of behaviours and attitudes, with researchers and theorists applying different labels to these behaviours, such as participation, identification, attachment, motivation, and membership". Similarly, Fredricks, Blumenfeld and Paris (2004) noted the multiplicity of constructs presented in the literature and advanced the need for a multi-faceted conceptualisation.

One-way to address this complexity is through the application of bio-ecological frameworks. These have been used to study school engagement and participation by Marjoribanks (2006), Boon (2006) and Cavanagh, Kennish and Sturgess (2008). Bio-ecological models of intellectual development have distinctive characteristics including provision for the assessment of mechanisms called *proximal processes*. These are complex reciprocal interaction[s] between an active, evolving biophysical human organism and the persons, objects, and symbols in the immediate environment" (Bronfenbrenner & Ceci, 1994, p. 572). Characteristics of the person, the environment and particular developmental outcome(s) fuel or energise the *proximal* processes. *Distal environmental resources* affect the efficiency of the *proximal* processes for the latter to work maximally" (Ceci, Rosenbaulum, DeBruyn & Lee, 1997, p. 312).

Another psychological theory that takes into account attributes of individuals and their environment is Flow Theory. Csikszentmihalyi (1990) reported that when people described optimal experiences (situations which are highly enjoyable), they often used the term *flow*. *Flow* refers to the "... spontaneous, seemingly effortless aspect of such experiences" (Csikszentmihalyi & Schneider, 2000, p. 97). Descriptions of *flow* experiences often refer to a balance between perceived high levels of skill and high levels of *challenge*. The task is demanding but the enjoyment of the experience also derives from having the *skills* necessary to complete the task (Massimini, Csikszentmihalyi & Carli, 1988).

Cavanagh, Kennish and Sturgess (2008) applied the bio-ecological approach to engagement in conjunction with Flow Theory to propose a model of student engagement in classroom learning. "Student engagement in learning is defined as a balance between the student's capability for learning and the expectations of learning in a particular learning environment - both capability and expectations are context specific" (Cavanagh, Kennish & Sturgess (2008, p. 9). The engagement sub-construct of learning capabilities is similar to the Flow Theory sub-construct of skills, and the engagement sub-construct of expectations of learning is similar to the Flow Theory sub-construct of challenge. These two engagement sub-constructs and their relation have been investigated qualitatively and quantitatively (see Cavanagh, 2009 & 2011a; Cavanagh & Kennish, 2009; Kennish & Cavanagh, 2011). The construct models for learning capabilities and expectations of

learning are presented in the following tables.

Table 1

Learning capabilities construct model

	uonnies construc				
	Self-esteem	Self-concept	Resilience	Self-regulation	Self-efficacy
More capability	Has positive self image	Strives to be perfect	Unqualified Expectations of coping	Responsible for learning	Perseveres in the face of adversity
	Confident decisions	Motivated by self reflection	Can deal with failure	Improves own learning	Has determination
	Has pride in self	Self reflecting	Expects succes	Understands or	Recognises contextual influences
	Trusts self to act	At ease comparing self with others	Overcomes small setbacks	Assesses own learning	Has expectations of self
Less capability	Sees worth in self	Compares self with others	Is aware of problems	Aware of learning	Makes effort

(Cavanagh, 2011b, p. 105)

Expectations	of learning const	ruct model		-	
	Explanation	Interpretation	Application	Perspective	Empathy
More demanding	Sophisticated	Profound	Masterful	Insightful	Mature
	In-depth	Revealing	Skilled	Thorough	Sensitive
	Developed	Perceptive	Able	Considered	Aware
	Intuitive	Interpreted	Apprentice	Aware	Developing
Less demanding	Naive	Literal	Novice	Uncritical	Egocentric

Table 2

(Cavanagh, 2011b, p. 105)

The columns in each model are the elements of the sub-construct. Expectations of student learning comprise expectations the student will explain, interpret, apply, show perspective and show empathy. Five levels have been specified for each element ranging from less at the bottom to more at the top.

Classroom learning environments have been extensively investigated using multi-dimensional theoretical models and instruments. For example the Questionnaire on Teacher Interaction (QTI) (Wubbels & Levy, 1991; Wubbels, Créton & Hooymayers, 1985) elicits student perceptions of teacher communication style. The Model for Interpersonal Teacher Behaviour underpinning the instrument has an axial structure similar to the spokes in wheel in which the axes represent different dimensions of teacher behaviour and ratings of the teacher are plotted on these axes. More recently, the What Is Happening In This Classroom Questionnaire (WIHIC) (Aldridge & Fraser, 2000; Fraser, 1998) also employed a multi-dimensional structure to comprehensively profile student perceptions of their own learning, learning with classmates, and teacher instruction. While multidimensional models are highly appropriate for factor analytic, structural equation modeling and hierarchical linear modeling methods of data analysis, they are not necessarily suitable when assumptions of uni-dimensionality are made. The research questions and methods of this investigation assumed uni-dimensionality and thus the model of the learning environment and the instrumentation needed to meet this criteria. In 2004, Cavanagh and Waugh constructed a learning environment instrument to collect student self-report data on student educational values, formal learning outcomes, and the attitudes and behaviours of classmates, the teacher and parents. These data fitted the uni-dimensionality requirement of the Rasch model (Rasch, 1960). This instrument and the underlying model were selected for the current investigation.

Rob Cavanagh

R.Cavanagh@curtin.edu.au

Methods

An 85-item student self-report paper and pencil instrument (see Appendix A) was created from previously developed scales (see Cavanagh & Waugh, 2004 [learning environment scale]; Kennish & Cavanagh, 2011 [engagement scale]). Engagement in classroom learning was measured by two sub-scales – Learning capabilities and Expectations of learning. Student perceptions of the classroom learning environment were measured by eight sub-scales - Self educational values, Self-learning outcomes, Classroom/peer learning attitudes and behaviours, Classroom/peer, support, Classroom/peer discussion, Classroom planning, Teacher support and expectations, and Parental involvement. The number of items and sample items within each sub-scale are presented in Table 3. The students responded on a three-point rating scale – strongly agree, agree and disagree.

ruore 5

Groups of items		
Sub-construct	Number of items	Sample item
Learning capabilities	12	I am clear about my strengths and weaknesses
(Engagement)		
Expectations of learning	15	In this class, I am expected to be critical of the
(Engagement)		views of others in a fair way
Self educational values	5	I gain satisfaction from learning new things
Self learning outcomes	9	My test scores are high
Classroom/peer learning at	11	We don't waste time in this class
behaviours		
Classroom/peer support	11	Students share problems with each other
Classroom/peer discussion	5	We talk about our test scores and grades
Classroom planning	3	We are involved in deciding how our progress
		will be assessed
Teacher support and expectat	9	The teacher sets high standards
Parental involvement	5	My parent(s) take an interest in my progress
Total	85	

Categorical items on whether or not the subject being reported was a 'favourite' subject, gender, year of schooling, and Aboriginality were included. The subject reported on (Mathematics, English, Science and Society and Environment), and the region of the school location were identifiable through the survey coding system applied prior to distribution.

Data were entered into IBM-SPSS for generation of descriptive statistics and into the Rasch Unidimensional Measurement Model (RUMM2030) (RUMM Laboratory, 2007) for Rasch model analyses. Data were coded '2' for strongly agree, '1' for agree and '0' for disagree.

RUMM2030 tests how well data from individual items fit the Rasch Rating Scale Model (Andrich, 1978a; Andrich, 1978b; Andrich, 1978c), by estimating statistics and generating displays. When data fit the Rasch model:

- The scale of items is a measure of a unidimensional construct (e.g. student perceptions of their engagement and of the learning environment);
- The respective difficulties the items presented to respondents are measured and plotted on one linear scale; and
- The affirmativeness of each respondent (person score) is measured, plotted on one linear scale, and available for valid between-group analyses (e.g. comparing genders).

The decision to use a Rasch model approach rather than traditional correlational methods was influenced by ongoing debate in psychometrics about the comparative merits of Item Response Theory/Rasch approaches and Classical Test Theory approaches. A major benefit of the Rasch model approach is the creation of linear scales (interval data), and the Rasch model requirement for

invariance, so-called 'person free' and 'item free' measures. These properties enable comparisons of measures and statistical operations (e.g. Analysis of Variance,) to be undertaken with a high degree of confidence.

Data sources

TT 1 1 4

Of the 4500 surveys distributed, 1760 (39%) were returned and processed. Sample characteristics are presented in Table 4. The stratified sampling process resulted in the respective sub-samples being representative of the statewide population.

Table 4					
Sample characte	eristics				
School location	Perth metropoli	tan	Rural/remote		
	17 schools 1323	surveys (75%)	6 schools 437 surveys (25%)		
Gender	Boys		Girls		
	802 (46%)		951 (54%)		
Subject	Favourite		Non-favourite		
-	354 (20.1%).		1406 (79.9%)		
Year	Year 8	Year 9	Year 10	Year 11	
	384 (21.8%)	348 (19.8%)	535 (30.4%)	489 (27.8%)	
Subject area	Mathematics	English	Science	Society & Environ	
	437 (24.8%)	451 (25.6%)	434 (24.7%)	438 (24.9%)	

Results

Objective (a) – To measure student engagement in classroom learning and elements of the classroom learning environment

As was noted earlier, when data fit the Rasch model, a variety of criteria are met and these provide strong evidence of a measure being created. Importantly, the data are manipulated deductively to fit the model in contrast to the model being inductively manipulated to suit the data. The RUMM2030 analyses show the fit of data and ways for this to be improved. For each of the 85 items, RUMM2030 tested how well the data fitted the Rasch model.

For each item, RUMM2030, estimates the expected score for students with different levels of affirmativeness. The Item Characteristic Curve for Item 72 (The teacher does not dominate us), presented in Figure 1, plots expected scores ranging from 0 (disagree) to 2 (strongly agree) on the vertical axis. Calibrated student scores, measured in logits (the natural logarithm of the probability of student affirmation of the items), are plotted on the horizontal axis. The s-shaped ogive shows the relation when the data fit the model well. The ogive in Figure 1 is overlaid with ten points each showing the actual score for students with a particular level of affirmativeness. When the data fit the model well, the plot of actual scores should match the expected scores closely. For these data, the students with higher affirmativeness (to the right of the horizontal axis,) scored lower than expected, while those with lower affirmativeness scored higher than expected. These data do not fit the Rasch model well. This misfit can be measured by estimating a residual, the difference between the actual score and the score predicted by the model. For Item 72, the residual is 9.2 logits which is outside the RUMM2030 default value of ± 2.5 . Of the 85 original items, 60 had residuals $\leq \pm 2.5$; details of these items are presented in Table 5. Additionally, a Chi Square test is applied to examine the interaction between an item and the trait. The Chi Square results for the nine Teacher support and expectations items (Items 72 to 80) and the five Parental involvement items (Items 81 to 85) suggested these items were likely indicating a different trait from the other 71 items.

Table 5

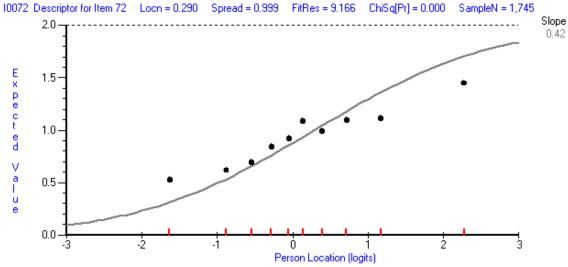


Figure 1 Item Characteristic Curve for Item 72 (Analysis name n1759demo1).

Fitting and misfitting items		
Sub-construct	Number of	Items with misfitting data
	Items fitting	
Learning capabilities	10/12	Item 5 (I don't admit defeat easily) & Item 11
		(I can easily identify what will be difficult)
Expectations of learning	15/15	
Self educational values	3/5	Item 29 (Finding new ways to do things is
		important to me) & Item 32 (I enjoy learning)
Self learning outcomes	8/9	Item 38 (The work is easy)
Classroom/peer learning at	7/11	Item 42 (Learning is really important in this
behaviours		class), Item 43 (I find new ways to learn in this class), Item 44 (We spend time thinking about how
		are going) & Item 49 (We expect our test scores and/or grades to be high)
Classroom/peer support	9/11	Item 53 (Students support each other) & Item 5
		(Students always encourage each other to express o
Classroom/peer discussion	5/5	
Classroom planning	3/3	
Teacher support and expectat	0/9	Items 72 to 80
Parental involvement	0/5	Items 81 to85
Total	60	
(Analysis name n1750damo))	

(Analysis name *n1759demo1*)

Another useful output of RUMM2030 for rating scale analysis is the generation of Category Probability Curves that show the distribution of responses to each category in the three-point response scale for each item. The Category Probability Curves for Item 72 are presented in Figure 2.

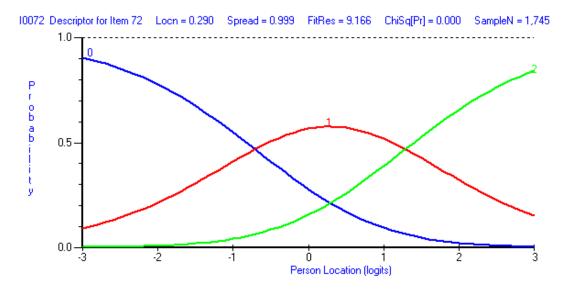


Figure 2 Category Probability Curves for Item 72 (Analysis name n1759demo1).

The vertical axis is the probability of a response category being selected and the horizontal axis is calibrated student affirmativeness scores as plotted in Figure 1. Curve 0, the disagree category, shows students with an affirmativeness score of -3.0 logits (a low score), had a high probability of selecting this category (p=0.9). As the affirmativeness of the students increases, the probability of selecting the disagree category decreases to 0.00 for students with an affirmativeness score of +3.0logits (a high score). Curve 1, the agree category, has a probability of 0.10 for students with an affirmativeness score of -3.0 logits, a probability of 0.6 for students with an affirmativeness score of +0.20 logits, and then decreases for students with higher scores. Curve 3, the strongly agree category is more likely to be selected by higher scoring students and the probability of this increases with increasing student scores. The two points at which there is an equal probability of selecting adjacent categories (-0.8 logits for disagree and agree, and +1.2 logits for agree and strongly agree) are termed thresholds. The sequence of threshold values shown in Figure 2 is evidence of students selecting the response categories in a logical and non-idiosyncratic manner. This pattern of responses was found in the data for all the items. The results of estimation of item residuals, item-trait interaction and thresholds inform decisions about the refinement of a measure. As was noted earlier, the residuals and item-trait interaction values suggest some of the items were not good indicators of the student trait indicated by the majority of the items. In particular, the nine Teacher support and expectations items (Items 72 to 80), and the five Parental involvement items (Items 81 to 85). These do not contribute to information about the constructs of interest as strongly as the other items. Data from Items 72 to 85 were put aside for further separate investigation as were data from another eleven items with poor fit to the model (see Table 4). The results of this investigation which centred on student perceptions of the teacher and their parents are reported in Cavanagh and Dellar (2012).

The refined scale comprised 60 items measuring the sub-constructs of Learning capabilities and Expectations of learning, Self educational values, Self learning outcomes, Classroom/peer learning

and Student Engagement in Learning 1: A Rasch Model Approach

attitudes and behaviours, Classroom/peer, support, Classroom/peer discussion, and Classroom planning. Data from all the items had an acceptable fit to the model, all thresholds were sequenced as required, and the proportion of variance in the calibrated student scores considered true (similar to Cronbach's Alpha), was very high (0.95). The proportion of variance in the data due to errors was low (5%). A Principal Components Factor Analysis of the residuals after the principal Rasch measure was extracted showed little structure in the loadings suggesting a lack of multidimensionality in the data (Analysis name *n1759demo2*).

Objective (b) - To plot measures of engagement and learning environment variables on the same linear scale

RUMM2030 estimates the difficulty the items presented to the students – some items are easy to affirm, others are more difficult. The item difficulties are measured in logits as were the student affirmativeness scores. In Figure 3, student scores and item difficulties for 60 items are plotted on the same logit scale (range of ± 3.0 logits). The labels for the 25 engagement items are in bolded italics type.

The most difficult item for the students to affirm was a learning environment Item, Item 48 -Students do not stop others from working (+1.11 logits). The easiest item for the students to affirm was Item 6 from the engagement sub-scale - Big challenges bring out the best in me (-1.04 logits). In general, the 25 learning environment items were easier to affirm than the 33 learning environment items. It should be noted that the item difficulty scores are the mean score attained by averaging the two item thresholds and when the thresholds are taken into account, the range of item difficulties in Figure 2 is increased to 5.0 logits. The distribution of these difficulties matches the 6.0 logit range of student scores well.

Logits	Student locations		Iter	n loca	tions						
3.0	×										
	×										
	**										
2.0	×										
2.0	× × × × × ×										
	××××										

1.0	*****		41	48							
	* * * * * * * * *	i	45	69	71						
	* * * * * * * * * * *	ĺ	35	51							
	$\times \times \times$		68	60	06	52	34	63	50	70	
	$\times \times \times$		40	61	20	67	12	62	21	66	
0.0	****		47	23	64	59	56	65			
	* * * * * * * * * * * * * * * * *		18	24	57	54	33	46	15	37	58
	*****		02	39	27	17	36	09	03		
	*****		26	13	08	14	31	19	30		
	******		16	22	28						
-1.0	******		25	01	04	10					
	*****		07								

	×××										
-2.0	× × × ×										
-2.0	~~ ××										
	~~										
	×										
-3.0		i.									

Figure 3 Item map for engagement and learning environment items (Analysis name *n1759demo2*).

Table 6

ts

The plotting of student scores and item difficulties on an interval scale with the unit of measurement being the logit, in conjunction with the good fit of data to the Rasch model, provides strong evidence that a 60-item measure has been created.

To further understand the distribution of items difficulties in Figure 3, item difficulties were averaged for each sub-construct (see Table 6). The most difficult sub-construct to affirm was Classroom planning (Items 69, 70 and 71). The easiest sub-construct to affirm was learning capabilities (Items 1, 2, 3, 4, 6, 7, 8, 9, 10, & 12).

Mean item difficulties for sub-constructs – locations measured in logit.					
Sub-construct	Mean difficulty(logits)				
Learning capabilities	-0.44				
Expectations of learning	-0.32				
Self educational values	-0.51				
Self learning outcomes	0.23				
Classroom/peer learning	0.53				
Classroom/peer support	0.16				
Classroom/peer discussion	0.26				
Classroom planning	0.79				

Objective (c) – To examine the effect of student membership of groups (e.g. gender, year of study), on variance in engagement and learning environment scores.

RUMM2030 plots student item scores for different groups of students in one Item Characteristic Curve display. The Item Characteristic Curve and the observed scores of boys and girls for Item 2 - I am pleased with myself, are presented in Figure 4.

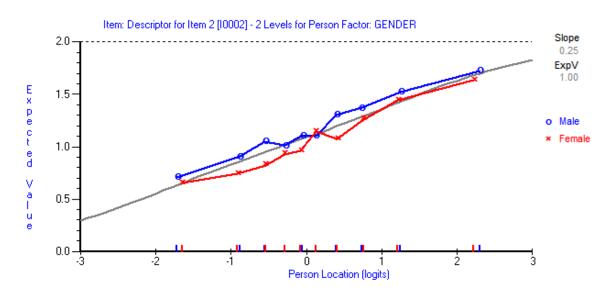


Figure 4 Item Characteristic Curve for Item 2 (Analysis name n1759demo2).

The scores for the males are consistently higher than for the females suggesting this item has a bias

Paper Presented at the Joint AARE/ APERA Conference, Sydney, 2012 Associations between the Classro

Associations between the Classroom Learning Environment and Student Engagement in Learning 1: A Rasch Model Approach

in favour of the boys – differential item functioning (DIF). One-way analysis of variance showed the difference was statistically significant (F= 21.5, p< 0.01). Of the 60 items, another seven showed DIF in favour of the boys (Items 3, 4, 6, 12, 13, 28 & 33), while four showed DIF in favour of the girls (Items 40, 45, 56 & 67). One method for dealing with item gender bias is to split the item's data to separate the girl's scores from the boy's scores and then to treat these as two separate items. This procedure was applied to the twelve items showing gender DIF and then student affirmativeness scores were re-estimated and tested for gender differences (Analysis name n1759demo3). The distributions of male and female affirmativeness scores are shown in Figure 5. The difference was statistically significant (F = 6.65, p< 0.01).

There was minimal DIF for the other person factors of region of school location, Year cohort, favourite/not-favourite subject and Aboriginality. One-way Analysis of Variance was used to determine whether variance in these scores was attributable to membership of particular groups. Country students had higher scores than metropolitan students (F=4.84, p< 0.05); the highest scores were for Year 8 and in decreasing order, Year 11, Year 9, Year 10 (F=22.23, p< 0.01); favourite subjects scored higher than non-favourites (F=151.80, p< 0.01); and there was no statistically significant difference for Aboriginality or the subject studied (Analysis name n1759demo3).

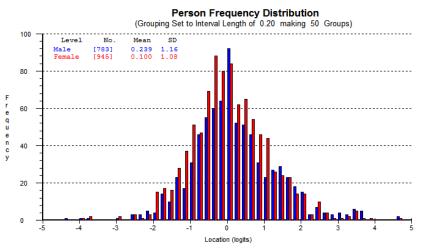


Figure 5 Person Frequency Distribution by gender (Analysis name n1759demo3).

Conclusion

Creation of one linear scale that measures two student engagement sub-constructs and six classroom learning environment sub-constructs provides a measurable and alternative perspective on the psycho-social classroom environment. The fit of data on this variety of sub-constructs to the Rasch model may well be due to the presence of a uni-dimensional or perhaps dominant construct. This is because measures of student engagement in classroom learning and the classroom learning environment, as were operationally defined and measured in this study and previous studies, were shown to constitute a single metric. The evidence for this was not based on correlations between variables as would be the case with traditional factor analytic and equation modeling approaches. Instead, the score of each student was calibrated with reference to the scale of items, a scale in which the items differed in the difficulty they presented to students. Similarly, the individual item difficulty estimates were made with reference to the distribution of student scores, a linear scale of student affirmativeness. The Item Map in Figure 3 displays these properties of the data. Fit of data to the Rasch model required these properties.

An extension of this study would be to cross-calibrate different learning environment measures on the assumption of an underlying student trait or set of traits (multiple calibrations). This would require reconsideration of multi-dimensional models of the learning environment and the current multivariate analytic methods.

References

- Aldridge, J. M., & Fraser, B. J. (2000). A cross-cultural study of classroom learning environments in Australia and Taiwan. *Learning Environments Research*, 3, 101–134.
- Andrich, D. (1978a). Application of a psychometric rating model to ordered categories which are scored with successive integers. *Applied Psychological Measurement*, 2(4), 581-594.
- Andrich, D. (1978b). Rating formulation for ordered response categories. *Psychometrika*, 43(4), 561-573.
- Andrich, D. (1978c). Scaling attitude items constructed and scores in the Likert tradition. *Educational and Psychological Measurement*, 38(3), 665-680.
- Boon, H.J. (2008). Risk or resilience? What makes a difference? *The Australian Educational Researcher*, *35*(1), 81-102.
- Bronfenbrenner, U., & Ceci, S.J. (1994). Nature-nurture reconceptualised in developmental perspective: A bioecological model. *Psychological Review*, 101(4), 568-586.
- Cavanagh, R.F. (2009). *Applying a unified theory of validity: Identifying evidence for validity arguments in an investigation of student engagement in classroom learning.* Paper presented at the 2009 Annual International Conference Annual International Conference of the Australian Association for Research in Education: Canberra.
- Cavanagh, R.F. (2011a). Confirming the conceptual content and structure of a curriculum framework: A Rasch Rating Scale Model approach. *Curriculum Perspectives*, 31(1) (in-press)
- Cavanagh, R.F. (2011b). Establishing the Validity of Rating Scale Instrumentation in Learning Environment Investigations. In Cavanagh, R.F., & Waugh, R.F. (Eds.), *Applications of Rasch Measurement in Learning Environments Research* (pp. 77-100). Rotterdam: Sense Publishers.
- Cavanagh, R.F., & Dellar, G.B. (2012). Measuring Student Perceptions of Adult Influences on their Classroom Learning. Paper presented at the 2012 Annual Meeting of the American Educational Research Association: Vancouver.
- Cavanagh, R.F., & Kennish, P. (2009). Quantifying student engagement in classroom learning: Student learning capabilities and the expectations of their learning. Paper presented at the 2009 Annual International Conference Annual International Conference of the Australian Association for Research in Education: Canberra.
- Cavanagh, R.F., Kennish, P., & Sturgess, K. (2008). Development of theoretical frameworks to inform measurement of secondary school student engagement with learning. Paper presented at the 2008 Annual International Conference Annual International Conference of the Australian Association for Research in Education: Brisbane.
- Cavanagh, R.F., & Waugh, R.F. (2004). Secondary school renewal: The effect of classroom learning culture on improving educational outcomes. *Learning Environments Research*, 7(1), 245-269.
- Ceci, S.J., Rosenbaulum, T., DeBruyn, E., & Lee, D.Y. (1997). A bioecological model of human development. In R.J. Sternberg & E.L. Grigorenko (Eds.), *Intelligence, heredity, and environment*, (pp. 303-322). Cambridge, UK: Cambridge University Press.
- Csikszentmihalyi, M. (1990). *Flow: The Psychology of Optimal Experience*. New York: Harper & Row.
- Csikszentmihalyi, M., & Schneider, B. (Eds.). (2000). *Becoming adult: How teenagers prepare for the world of work*. New York: Basic Books.
- Fraser, B. J. (1998). Classroom environment instruments: Development, validity, and applications. *Learning Environments Research*, 1, 7–33.
- Fredricks, J.A., Blumenfeld, P.C., & Paris, A.H. (2004). *Review of Educational Research*, 74(1), 51-109.
- Glanville, J.L., & Wildhagen, T. (2007). The measurement of school engagement: Assessing

and Student Engagement in Learning 1: A Rasch Model Approach

dimensionality and measurement invariance across race and ethnicity. *Educational and Psychological Measurement*, 67(6), 1019-1041.

- Kennish, P., & Cavanagh, R.F. (2011). The Engagement in Classroom Learning of Years 10 and 11 Western Australian Students In Cavanagh, R.F., & Waugh, R.F. (Eds.), *Applications of Rasch Measurement in Learning Environments Research* (pp. 285-304). Rotterdam: Sense Publishers.
- Marjoribanks, K. (2006). Adolescent's cognitive habits, learning environments, affective outcomes of schooling, and young adult's educational attainment. *Educational Psychology*, *26*(2), 229-250.
- Massimini, F., Csikszentmihalyi, M., & Carli, M. (1987). The monitoring of optimal experience. A tool for psychiatric rehabilitation. *Journal of Nervous and Mental Disease*, *175*(9), 545-549.
- Rasch, G. (1960). *Probabilistic models for some intelligence and attainment tests*. Chicago: MESA Press.
- RUMMLab. (2007). Rasch Unidimensional Measurement Model. Perth, Western Australia: RUMMLab.
- Wubbels, T., & Levy, J. (1991). A comparison of interpersonal behaviour of Dutch and American teachers. *International Journal of Intercultural Relations*, *15*, 1–18.
- Wubbels, T., Créton, H. A., & Hooymayers, H. P. (1985, March). Discipline problems of beginning teachers: Interactional behaviour mapped out. Paper presented at the annual meeting of the American Educational Research Association, Chicago. (ERIC Document Reproduction Service No. Ed. 260040)

APPENDIX A: SURVEY OF STUDENT ENGAGEMENT IN CLASSROOM LEARNING

SURVEY OF STUDENT ENGAGEMENT IN CLASSROOM LEARNING

INFORMATION SHEET

Please detach this sheet from the questionnaire. You might want to keep it or take it home.

This questionnaire is part of a study about how secondary school students see their engagement in classroom learning. The researchers value your views and would be most grateful for your participation. We are studying connections between what is asked of you in your schoolwork, your abilities and skills, and aspects of your class and classroom.

Before you decide to participate, there some things you need to made aware of.

First, completing the questionnaire is voluntary. You do not have to complete it and can stop working on it any time.

Second, we do not want you to provide your name or the name of your teacher. It will be anonymous and your identity will not be available to anyone.

Third, if you or your parents have any concerns or matters requiring clarification, please contact Associate Professor Rob Cavanagh at Curtin University on 9266 2162 email R.Cavanagh@curtin.edu.au.

This study has been approved by the Curtin University Human Research Ethics Committee (Approval Number HR 70/2009). The committee is comprised of members of the public, academics, lawyers, doctors and pastoral carers. Its main role is to protect participants. If needed, verification of approval can be obtained either by writing to the Curtin University Human Research Ethics Committee, c/- Office of Research and Development, Curtin University of Technology, GPO Box U1987, Perth, 6845 or by telephoning 9266 2786 or by emailing hrec@curtin.edu.au.

Thank you in anticipation of your help with our research.

SURVEY OF STUDENT ENGAGEMENT IN CLASSROOM LEARNING

			(Office u	use only
School	Year	 			
Student gender (tick box)	Male	Femal	e 🗖		
Are you of Aboriginal or Torres Strait Islander Descent (tick bc	Yes	No			
INSTRUCTIONS					
If you strongly agree with the statement, please tick 3		\mathbf{V}_3	\square_2		\Box_1
If you agree with the statement, please tick 2		\square_3	\mathbf{V}_2		\Box_1
If you disagree with the statement, please tick 1		\square_3	\square_2		\mathbf{v}_1

PART A: How I see myself in this class

In this o	class	Strongly	Disagree	
		Agree		
1	I am OK	\square_3	\square_2	\Box_1
2	I am pleased with myself	\square_3	\square_2	\Box_1
3	I am confident about my ability to perform well	\square_3	\square_2	\Box_1
4	I can overcome small problems	\square_3	\square_2	\Box_1
5	I don't admit defeat easily	\square_3	\square_2	\Box_1
6	Big challenges bring out the best in me	\square_3	\square_2	\Box_1
7	I make an effort	\square_3	\square_2	\Box_1
8	I am clear about my strengths and weaknesses	\square_3	\square_2	\Box_1
9	Improvements in my learning come from me	\square_3	\square_2	\Box_1
10	I try when I need to	\square_3	\square_2	\Box_1
11	I can easily identify what will be difficult	\square_3	\square_2	\Box_1
12	l never give up	\square_3	\square_2	\Box_1

PART B: What is expected of me

In this	class, I am <u>expected</u> to	Strongly	Agree	Disagree
13	Use my own ideas to explain what I've learnt	\square_3	\square_2	\Box_1
14	Connect different ideas together	\square_3	\square_2	\Box_1
15	Find new explanations for what I am taught	\square_3	\square_2	\Box_1
16	Show I know the work correctly	\square_3	\square_2	\Box_1
17	Show different ways of understanding the work	\square_3	\square_2	\Box_1
18	Find simple explanations for things that are very complex	\square_3	\square_2	\Box_1
19	Practice using what I've learnt	\square_3	\square_2	\Box_1
20	Use what I've learnt to do things outside of the class	\square_3	\square_2	\Box_1
21	Find new ways to use what I've learnt to solve problems outside of the class	\square_3	\square_2	\Box_1
22	Be positive towards learning about things that are new for me	\square_3	\square_2	\Box_1
23	Think about the views of the experts when I'm learning new thi	\square_3	\square_2	\Box_1
24	Be critical of the views of others in a fair way	\square_3	\square_2	\Box_1
25	Try to understand the views of others	\square_3	\square_2	\Box_1
26	Try to be unbiased in understanding the views of others	\square_3	\square_2	\Box_1
27	Show how I know others feel differently from me	\square_3	\square_2	\Box_1

PART C: Learning and You

Educational Values

28 I enjoy finding out how things work	\square_3	\square_2	\Box_1
29 Finding new ways to do things is important to me	\square_3	\square_2	\Box_1
30 I gain satisfaction from learning new things	\square_3	\square_2	\Box_1
31 I ask for help from my teachers when required	\square_3	\square_2	\Box_1
32 I enjoy learning	\square_3	\square_2	\Box_1

Learning Outcomes

33 I understand the work well	\square_3	\square_2	\Box_1
34 I gain high grades on assignments	\square_3	\square_2	\Box_1
35 My test scores are high	\square_3	\square_2	\Box_1
36 I do well at school	\square_3	\square_2	\Box_1
37 I am a successful student	\square_3	\square_2	\Box_1
38 The work is easy	\square_3	\square_2	\Box_1

7,0000		200100III E0uli		
and S	Student Engagement in L	Learning 1: A	Rasch Model A	pproach

F	Rob Cavanagh
R.Cavanagh@	@curtin.edu.au

39 I perform to the best of my ability	\square_3	\square_2	\Box_1
40 I meet homework requirements	\square_3	\square_2	\Box_1
41 I start work as soon as I enter the room	\square_3	\square_2	\Box_1

Classroom Learning

42 Learning is really important in this class	\square_3	\square_2	\Box_1
43 I find new ways to learn in this class	\square_3	\square_2	\Box_1
44 We spend time thinking about how our studies are going	\square_3	\square_2	\Box_1
45 We don't waste time in this class	\square_3	\square_2	\Box_1
46 Students learn from each other	\square_3	\square_2	\Box_1
47 I take notice of what my classmates have to say about our learn	\square_3	\square_2	\Box_1
48 Students do not stop others from working	\square_3	\square_2	\Box_1
49 We expect our test scores and/or grades to be high	\square_3	\square_2	\Box_1
50 Our work is marked quickly	\square_3	\square_2	\Box_1
51 We are rewarded for doing well	\square_3	\square_2	\Box_1
52 The top students in this class are respected by others	\square_3	\square_2	\Box_1

Classroom Support

53 Students support each other	\square_3	\square_2	\Box_1
54 Students are willing to help each other when problems arise	\square_3	\square_2	\Box_1
55 Students always encourage each other to express our opinions	\square_3	\square_2	\Box_1
56 Students share problems with each other	\square_3	\square_2	\Box_1
57 Students look forward to being together	\square_3	\square_2	\Box_1
58 Students make an effort to get on well with each other	\square_3	\square_2	\Box_1
59 Our classroom is a happy place	\square_3	\square_2	\Box_1
60 My views are supported by my classmates	\square_3	\square_2	\Box_1
61 Students are tolerant of one another	\square_3	\square_2	\Box_1
62 Students care for each other	\square_3	\square_2	\Box_1
63 Students are not nasty towards each other	\square_3	\square_2	\Box_1
Classroom Discussion			
64 There is a lot of talk about important matters	\square_3	\square_2	\Box_1
65 We talk about our test scores and grades	\square_3	\square_2	\Box_1

 \Box_2

 \Box_1

ment I Approach

and Student Engagement in Learning 1: A Rasch Model Approach	Rob (R.Cavanagh@cur	Cavanagh rtin.edu.au	
67 We have discussions about what we should be learning	\square_3	\square_2	\Box_1
68 We talk about our progress	\square_3	\square_2	\Box_1
Classroom Planning			
69 We are involved in deciding how our progress will be asses	sec \square_3	\square_2	\Box_1
70 We are given assessment tasks or tests when we are ready	\square_3	\square_2	\Box_1
71 We set the deadlines with the teacher for completing work	\square_3	\square_2	\Box_1
Your Teacher			
72 The teacher does not dominate us	\square_3	\square_2	\Box_1
73 The teacher asks our advice		\square_2	\Box_1
74 The teacher takes the side of students who are treated unfa others	irly 🗖 3	\Box_2	\Box_1
75 The teacher helps students who get into trouble around the	sc \square_3	\square_2	\Box_1
76 The teacher helps students with family problems	\square_3	\square_2	\Box_1
77 At times, the teacher seems more like a mum or dad than a	tea \square_3	\square_2	\Box_1
78 The teacher expects all students to be fully committed to th	eir \square_3	\square_2	\Box_1
79 The teacher sets high standards	\square_3	\square_2	\Box_1
80 The teacher has high expectations of us	\square_3	\square_2	\Box_1
Your Parent(s)			
81 My parent(s) take an interest in my progress	\square_3	\square_2	\Box_1
82 My parent(s) are not critical of the teacher	\square_3	\square_2	\Box_1
83 My parent(s) are informed when I produce excellent work	\square_3	\square_2	\Box_1
84 My parent(s) are given frequent information on my progres	\Box_3	\square_2	\Box_1
85 My parent(s) communicate with the teacher	\square_3	\square_2	\Box_1

Thank you for your time

.