Sources of occupational stress in New Zealand primary teachers

Bryan Tuck and Eleanor Hawe
Auckland College of Education
Auckland
New Zealand
Robert Manthei
University of Canterbury
Christchurch
New Zealand
Vivienne Adair and Dennis Moore
University of Auckland
Auckland
New Zealand

AARE-NZARE Conference 1999, Melbourne, Australia

© 1999 Bryan Tuck
Abstract: Three hundred and fifty three full time registered classroom teachers in 30 primary schools completed scales assessing overall occupational stress, sources of occupational stress and job satisfaction. The teachers reported moderate levels of stress and job satisfaction. Disruptive students, inadequate remuneration and task overload were sources of moderate stress, lack of respect for teachers and teaching a source of mild to moderate stress, and inadequate resources and administrative support sources of mild stress. Female and male teachers had similar patterns of stress, but there were significant differences between the patterns of beginning and experienced teachers. The teachers were able to be clustered into two groups: one made up of teachers experiencing moderate levels of stress and job satisfaction, the other consisting of teachers experiencing very high levels of stress and little in the way of job satisfaction. A forward regression analysis indicated that task overload and disruptive pupils were the key sources of stress discriminating between the clusters. The schools could also be divided into two clusters in terms of the cluster identity of the majority of the teachers. Schools in both clusters had similar demographic characteristics, i.e. the socio-economic status of their zone, the proportion of full time registered staff and pupil mobility.

Sources of Occupational Stress in New Zealand Primary Teachers.

Research consistently indicates that teachers report high levels of stress in New Zealand (Dewe, 1986; Manthei and Solman, 1988, Whitehead and Ryba, 1995; Manthei, Gilmore, Tuck and Adair, 1996) and overseas, e.g. Borg (1990). A mix of teachers and principals in the study of Whitehead and Ryba (1995) rated themselves as having high levels of job stress, and about 30 per cent of intermediate teachers in the studies of Manthei and Solman (1988) and Manthei, Gilmore, Tuck and Adair (1996) rated teaching as very or extremely stressful. Moreover Manthei et al. (1996) reported a high proportion of teachers scoring on the "high" to "severe" category of the General Health Questionnaire (Goldberg, 1972).

There have been numerous studies of teacher stress in New Zealand (see Manthei and Solman, 1988, for an early review). These studies have identified numerous sources of stress intrinsic to the task and role of a teacher, e.g. task and role overload and associated demands on time (Bridges, 1992; Dewe, 1986; Manthei and Solman, 1988; Manthei et al., 1996), disruptive pupils (Borland, 1962; Galloway, Panckhurst, Boswell, Boswell and Green, 1982a; Manthei and Solman, 1988; Manthei et al., 1996), inadequate administrative support (Adair, Manthei and Tuck, 1989), lack of social recognition of value of teaching as vocation (Galloway et al., 1982a), and inadequate resourcing for teaching (Manthei and Solman, 1988).

Stress and job satisfaction among New Zealand teachers is not surprisingly inversely related. On average the more highly stressed the teacher is the lower the level of reported job satisfaction. Manthei et al. (1996) report a correlation of 0.49 between single questions assessing stress and job dissatisfaction. This value is a little higher than that observed by Manthei and Solman (1988) in a previous study, but close to that reported earlier by Galloway, Panckhurst, Boswell, Boswell and Green (1984). It could be that these values have been attenuated by errors of measurement, and it would be useful to find out whether similar values would be obtained when scales rather than single items were used to assess job satisfaction.

Researchers have also identified a number of biographical correlates of teacher stress, e.g. teacher gender (Galloway, Panckhurst, Boswell, Boswell and Green, 1982b, Manthei and
Solman, 1988; and teacher age and experience (Borland, 1962; Galloway, Pankhurst, Boswell, Boswell and Green, 1982a; Manthei and Solman, 1988). However as noted by Manthei et al. (1996) these relationships have not been consistently replicated, e.g. Whitehead and Ryba (1995) in their study of New Zealand teachers found no association between teacher gender and stress. The reasons for these inconsistencies are not obvious, but they could in part reside in variations in the samples. At one extreme a sample in a recent study consists of a mix of teachers, teacher administrators, and full time administrators across a range of levels of schooling, e.g. Whitehead and Ryba (1995). Other samples consist of teachers and teacher administrators at one level of schooling, e.g. Intermediate schools (Adair et al. (1989). Thus the studies use samples drawn from different mixes of levels of schooling (Primary, Intermediate and Secondary) and roles (classroom teacher, teaching administrator, and non-teaching administrator).

In the overwhelming majority of the studies on teacher stress the unit of interest has been the individual teacher, not the institution in which they are located. Friedman (1991) is one of the few researchers on teacher stress to examine the impact of school factors on an extreme form of stress, burnout. There do not seem to be any studies in New Zealand that have examined the relationship between stress and demographic features of the school in which the teacher works.

The current study to some extent covers "old ground", but it does so from a somewhat different perspective, i.e. it samples only one level of schooling, Primary, and only one role within that level, full time classroom teacher. Moreover it examines teacher stress as a function of some of the characteristics of the school within which the teacher works.

METHOD

Sample

Sixteen of the total of 30 primary schools were drawn at random from an area from Pukekohe, a town just south of Auckland to Waipu, a small village approximately 130 km north of Auckland. This area included metropolitan Auckland, a city of about 1,100,000 people. Ten primary schools were drawn at random from a second area, metropolitan Christchurch, a city of about 400,000 people in the South Island of New Zealand. It was then decided to over sample schools graded by the Ministry of Education in greatest need of resourcing (decile funding level one), and consequently a further four such schools were included in the final sample. All of these four schools were from within the Auckland urban area.

All of the teachers in the 30 schools were asked to complete the questionnaire, but only the returns of the full-time registered classroom teachers and full-time classroom teachers with provisional registration were included in the final sample. Principals, Deputy and Associate Principals were excluded even if they had teaching responsibilities, as were special needs teachers, part-time teachers, and other ancillary teaching staff. The final sample consisted of 353 full-time primary teachers with either full or provisional registration (all teachers in their first two years of teaching were in the latter category). The schools supplied information on their entitlement of full time equivalent teaching positions, and the returns indicate that the final sample of 353 teachers was about two thirds of the theoretical entitlement of full time equivalent teaching positions in the 30 schools.
Instruments

Stress in Teaching Scale: This 30 item likert type scale (see Appendix A) was developed from one used in earlier studies (Laughlin, 1984; Manthei and Solman, 1988; Manthei et al. (1996). A homogeneity analysis of the scale using the sample of teachers in the present study indicated that the total or average item score on the scale is sufficiently reliable (alpha = 0.94) to assess trends in individuals as well as those in groups.

Sources of Stress: A principal factor analysis with varimax rotation was undertaken of the responses of the 353 full time registered teachers to the 30 item Stress in Teaching Scale. The purpose of this analysis was to develop, if possible, a set of relatively homogeneous subscales measuring sources of stress. Six principal factors had eigen values of greater than 1.0 (10.95, 2.15, 1.93, 1.56, 1.37 and 1.28) and they accounted for 64.1% of the variance. Following varimax rotation the six factors were interpreted in terms of items that had univocal rotated factor loadings greater than or equal to 0.45. The six constructed subscales, with their items and rotated factor loadings, and scale alphas, were as follows:

Factor 1: Disruptive Students (alpha = 0.84)

"pupils impolite and and disruptive behaviour" (0.80)
"individual pupils who continually misbehave" (0.78)
"maintaining class discipline with difficult classes" (.71)

Factor 2: Respect for Teachers (alpha = 0.85)

"lack of respect in society for schools and teachers" (0.74)
"undeserved public criticism of teachers" (0.71)
"lack of understanding of for the work of teachers by general public" (0.68)

Factor 3: Task Overload (alpha = 0.85)

"frequent changes in curriculum" (0.68)
"lack of time for preparation and organisation" (0.58)
"lack of direction in curriculum change" (0.58)
"demands on teachers to cope with rapid changes" (0.57)
"excessive time demands of teaching" (0.56)
"lack of support implementing curriculum change" (0.52)
"ERO requests for information and visits" (0.48)
"lack of support to assist children from families under stress" (0.45)

Factor 4: Financial Rewards (alpha = 0.90)
"salary not keeping up with cost of living" (0.88)

"salary not covering cost of living" (0.82)

"salary not commensurate with training required of teachers" (0.68)

Factor 5: Quality of Resourcing (alpha = 0.75)

"unattractive school buildings and grounds" (.60)

"poor environmental conditions, e.g. inadequate heating, poor lighting. (0.60)

"shortages of equipment and other resources" (0.53)

"covering for absent teachers when relievers unavailable" (0.49)

Factor 6: Quality of Administrative Support (alpha = 0.82)

"disenchantment with school administration" (0.76)

"lack of recognition by principal for contributions in teaching and other responsibilities" (0.70)

"lack of involvement in decision making" (0.64)

In general the naming of the factors was reasonably straightforward. The factors are similar to but not identical with those produced by the analysis of Manthei and Solman (1988), but this is to be expected, as there are additional items in the current analysis. The alpha values indicate that the scales are relatively homogeneous and reliable enough to be used in the analysis of group trends. Five of the original 30 items did not have factor loadings of at least 0.45 on any factor, and thus did not contribute to the subscales score assessing sources of stress. The six subscales are not independent, but the intercorrelations are modest (see Table 1), and not too dissimilar to those reported in Manthei et al. (1996).

Table 1: Correlations among subscales of sources of stress

<table>
<thead>
<tr>
<th>Subscales</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disruptive Students</td>
<td>0.35</td>
<td>0.42</td>
<td>0.28</td>
<td>0.33</td>
<td>0.22</td>
</tr>
<tr>
<td>2. Respect for Teachers</td>
<td>0.52</td>
<td>0.49</td>
<td>0.46</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>3. Task Overload</td>
<td></td>
<td>0.39</td>
<td>0.59</td>
<td>0.52</td>
<td></td>
</tr>
</tbody>
</table>
4. Pay | 0.46 | 0.35
5 Resourcing | 0.53
6. Admin Support

Note: All correlations significant (p<.001, one-tailed)

General Occupational Stress with Teaching: The teachers were asked "In general how stressful do you find being a teacher?" There were five possible responses: "Not at All" (scale value = 1), "Mildly Stressful" (scale value = 2), "Moderately Stressful" (scale value = 3), "Very Stressful" (scale value = 4), and "Extremely Stressful" (scale value = 5). This question had been used in a number of previous studies (Manthei and Solman, 1988; Adair et al., 1989; and Manthei et al. 1996). These studies consistently report correlations of about 0.50 between responses to the single question on "In general how stressful do you find being a teacher?" and scores on a scale assessing stress in teaching. This relationship is modest, but not unexpected as The Stress in Teaching Scale assumes all items contribute equally to the overall score. The single question on occupational stress in teaching enables the respondents to put their own weights on contributing factors. The reliability of responses to the single question is unknown, but it complements the information provided by the Stress in Teaching Scale.

Satisfaction with Teaching Scale: This scale consisted of five items, some of which had been used in an earlier study (Manthei and Solman, 1988). The items with their response categories are set out in Appendix A. A homogeneity analysis using the sample of 353 full time teachers in the present study found that all of the corrected item-total correlations were above 0.55 and the alpha for the five-item scale was 0.80.

Procedure

The principal of each school was contacted by phone and information sent to them on the proposed study including a detailed participant information sheet and information on ethics approval. The questionnaires were then posted out to the principals of each school with stamped and addressed envelopes near the end of term 3, 1997.

RESULTS

How Stressful is Teaching in General?

The teachers were asked "In general how stressful do you find being a teacher. The mean of the ratings (M = 3.18) of the 347 teachers who answered the question indicates that on average they perceive teaching as being "moderately stressful".

An ANOVA was run testing the association between levels of general stress and years of teaching experience and teacher gender. The ratings of general stress by Beginning
Teachers (M = 3.11, n = 64), i.e. those in their first two years of teaching, did not vary significantly \[F(1,345) = 0.73, p = 0.72 \] from the ratings of their experienced counterparts (M = 3.20, n = 283), i.e. teachers with more than two years experience. There was also no significant \[F(1,345) = 1.30, p = 0.26 \] difference between the levels of general stress reported by female (M = 3.2, n = 293) and male (M = 3.3, n = 50) teachers.

Sources of Stress in Teaching

The pattern of means in Table 2 suggests that some sources of stress were more salient than others. The mean ratings of three of the sources - "Disruptive Students", "Pay", and "Task Overload" - all received average ratings virtually identical to the scale value for "Moderate Stress". The lack of recognition and respect for teachers by society was rated midway between "Mild" and "Moderate Stress", and the quality of resources and administrative support was regarded as being only mildly stressful.

A MANOVA (the six subscales by gender by years of experience) found no significant effect for gender \[F_{pillai'}(6,340) = 0.30, p = .94 \], and no significant interaction between teaching experience and gender \[F_{pillai'}(6,340) = 0.30, p = .94 \], but there was a significant effect for teaching experience \[F_{pillai'}(6,340) = 6.79, p < .001 \].

Table 2: Mean item responses on subscales of sources of stress

<table>
<thead>
<tr>
<th>Subscales</th>
<th>Item Mean</th>
<th>Item SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Disruptive Students</td>
<td>3.18</td>
<td>0.93</td>
</tr>
<tr>
<td>2. Respect for Teachers</td>
<td>2.65</td>
<td>0.94</td>
</tr>
<tr>
<td>3. Task Overload</td>
<td>2.94</td>
<td>0.77</td>
</tr>
<tr>
<td>4. Pay</td>
<td>3.15</td>
<td>1.23</td>
</tr>
<tr>
<td>5. Resources</td>
<td>2.12</td>
<td>0.82</td>
</tr>
<tr>
<td>6. Admin Support</td>
<td>2.07</td>
<td>0.96</td>
</tr>
</tbody>
</table>

Note: A scale value of 1 = no stress, 2 = mild, 3 = moderate, 4 = much stress, 5 = extreme stress

The experienced teachers’ rating of Task Overload (M = 3.0) was identical to the scale value of "moderate stress", and significantly higher \[F(1,345) = 11.63, p = .001 \] than the mean rating (M = 2.5) of the Beginning Teachers, those in their first two years of teaching. Experienced teachers also rated the Quality of Resourcing (M = 2.2) as a significantly \[F(1,345) = 11.63, p = .001 \] greater source of stress than Beginning Teachers (M = 1.9), and their mean rating for Respect for Teachers (M = 2.8) was also significantly higher \[F(1,345) = 4.56, p < .05 \] than the mean of the Beginning Teachers (M = 2.4). However renumeration was perceived by the Beginning Teachers (M = 3.7) to be a significantly \[F(1,345) = \]
greater source of stress ($M = 3.2$, experienced teachers). The pattern of the difference is perhaps not surprising as the salaries for Beginning Teachers at the time of the study were very low and during the first two years of their teaching a Tutor Teacher monitors their responsibilities and teaching loads. Perhaps over time teachers become more sensitive to criticism and the relatively low status of primary teaching, and this explains their relatively higher ratings for this source of stress.

How satisfied are teachers with their jobs?

There were five items in the Satisfaction with Teaching Scale (see Appendix A). The mean rating of 3.6 to the first question, "In general how satisfied are you with your present job as a teacher" was equivalent to midway between "Fairly Satisfied" and "No strong feelings either way". The mean rating of 3.1 for "How likely is it that you would choose teaching as a career if you were to start your working life over again" was very close to "No Strong Feelings either Way". The average response ($M = 3.5$) to "How much of the time do you feel satisfied with your job" was mid way between "About Half of the Time" and "Most of the Time". The mean rating of 3.3, to "How often after a days teaching do you feel you have accomplished something really worthwhile" was closest to about "About Half of the Time", and on average ($M = 3.2$) the teachers reported that they "liked their job" about as much as "about half of their friends liked theirs". Overall it could be said that the teachers are experiencing modest levels of job satisfaction.

An ANOVA was run to examine the association between gender and years of teaching experience and job satisfaction, with the mean item response across the five-item scale of job satisfaction being the dependent variable. There was no significant difference [$F(1, 345) = 1.36, p = 0.25$] between the levels of job satisfaction reported by the Beginning Teachers ($M = 3.53$) and their more experienced counterparts ($M = 3.34$). However the women teachers ($M = 3.41$) reported significantly higher [$F(1,345) = 3.72, p = .05$] levels of job satisfaction than the men ($M = 3.17$).

General Stress in Teaching, Job Satisfaction, and Sources of Stress

There was a significant correlation ($r = -0.48, p < .001$) between responses to the question "In general how stressful do you find being a teacher?" and the mean item response on the Satisfaction with Teaching Scale. A cluster analysis (K-Means Cluster Analysis, SPSS Version 9.0) was run with these two variables as classificatory factors. The analysis identified two clusters:

- Cluster One consisted of 209 full time teachers, and they had a mean of 2.7 on the question on general stress. The closest response category is "Moderately Stressful". The mean of 3.7 on the Satisfaction with Teaching Scale is closest to item response categories of "Fairly Satisfied" or satisfied "Most of the Time".

- Cluster Two consisted of 138 full time teachers, and they had a mean of 3.9 on the question on general stress, virtually equivalent to a response of "Very Stressful". Their mean of 2.9 on the Satisfaction with Teaching Scale is virtually equivalent to an item response of satisfied about "Half of the Time".

Thus Cluster One consisted of teachers who although experiencing moderate levels of stress reported being fairly satisfied, whereas Cluster Two consisted of teachers experiencing high levels of stress and relatively little job satisfaction.

Two regression analyses were run with the cluster identity of the individual teacher (a binary variable with values of 1 or 0) as the independent variable and the six subscales of sources
of stress as the dependent variables. The initial analysis run was a forward regression, with p for entry $= .05$, and p for removal $= .10$. The first variable entered was Task Overload, and this had a correlation of 0.39 with Cluster Identity. The second and last variable entered was Disruptive Students, and this significantly increased the multiple correlation to 0.42. No other subscale had a significant semi-partial correlation with Cluster Identity. The second analysis entered all of the dependent variables simultaneously and the obtained multiple R was 0.45, which although significant [$F (6,287) = 12.07, p<.001$] was little different from the multiple R obtained in the forward regression with only two dependent variables. The standardised Beta coefficients were as follows: Task Overload (Beta = .38, $t = 4.90, p<.001$), Disruptive Students (Beta = .18, $t = 3.01, p<.005$), Resources (Beta = .154, $t = 2.15, p<.05$), Administrative Support (Beta=.12, $t = 1.83, p = .07$), Respect for Teachers (Beta = .11, $t = 1.61, p = .11$) and Pay (Beta = .07, $t = 1.03, p = .31$).

An inspection of the point-biserial correlations between Cluster Identity and the six subscales found that they ranged from r_{pbi} of 0.39 and 0.31 for Task Overload and Disruptive Students respectively, through to 0.25 for Quality of Administrative Support, 0.19 for Pay, and 0.16 for Quality of Resources and Respect for Teachers. All of these correlations were significant at the one percent level of confidence (one-tailed). Overall the multiple regressions indicate that there are two key sources of stress that discriminate independently between the two clusters of teachers, Task Overload and Disruptive Students. Two other sources also made significant independent contributions to discriminating between the clusters and these were the Quality of Resourcing and the Quality of Administrative Support.

General Stress in Teaching, Job Satisfaction and Structural Features of the School

The cluster identity of each individual teacher was used to categorise schools. Only schools that had a return of more than 60 percent of their nominal roll of full time equivalent teaching positions were classified. Schools were assigned a cluster identity when 55 percent or more of their teachers had a common cluster identity. Thus if at least 55 percent of teachers in a School had been categorised as say Cluster One then their school was classified as a Cluster One school. Using these rules, twenty out of the original 30 schools could be classified as either Cluster One or Cluster Two schools. Three schools could not be classified because their teachers were evenly split between the two clusters and another seven were excluded because their returns were less than sixty percent of their nominal roll of full time equivalent teaching positions. Eighteen out of the 20 schools clustered had 60 percent or more of their teachers having a common cluster identity.

Table 3: Cross tabulation of school funding level by cluster membership

<table>
<thead>
<tr>
<th>Funding Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster 1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cluster 2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note: a) Schools on funding level 1 are schools in communities with low socio-economic status whereas those in funding steps 8, 9, and 10 are in affluent areas

b) The difference between the mean funding step of Cluster One (M = 4.8) and Cluster Two (M = 5.6) was not significant ($t = .45$, $df = 18$, $p = .65$, two-tailed).

Table 4: Proportion of full time registered teachers by cluster membership

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>.79</td>
<td>.14</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>.84</td>
<td>.10</td>
</tr>
</tbody>
</table>

Note: a) Three schools did not supply information on staff qualifications

b) The difference between clusters is not significant ($t = .88$, $df = 15$, $p = .40$)

Table 5: Mobility of students by cluster membership

<table>
<thead>
<tr>
<th>Cluster</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>.15</td>
<td>.12</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>.14</td>
<td>.14</td>
</tr>
</tbody>
</table>

Notes: a) One school did not supply information on student turnover

b. b) Student turnover varied dramatically across schools ranging from 3 to over 50 percent

c) The difference between clusters is not significant

($t = .28$, $df = 17$, $p = .79$)
The schools supplied information on the level of their funding step, the proportion of their teaching staff who had full registration, and pupil mobility. The Cluster One and Cluster Two schools were drawn from across all funding levels (see Table 3), and there were no significant differences between the two clusters of schools in terms of either the proportion of full time registered teachers (see Table 4) or pupil mobility (see Table 5).

Thus in the present sample of schools there were no significant relationships between the demographic features of the school - funding level, pupil mobility and proportion of registered full time teachers - and the level of stress and job satisfaction experienced by the majority of a school’s full time classroom teachers.

SUMMARY AND DISCUSSION

The primary teachers in this study on average reported moderate levels of occupational stress and modest levels of satisfaction with teaching. In general teachers reported Disruptive Students, Financial Rewards, and Task Overload with consequent lack of time as being sources of moderate stress. The absence of Respect for Teachers was between a mild and moderate source of stress, and the Quality of Administrative Support and the Quality of Resourcing mild sources of stress. This pattern is similar to that reported by Manthei et al. (1996). Although there was no significant association between occupational stress in general and gender and experience (a finding not dissimilar to that reported by Whitehead and Ryba, 1995, and Manthei et al., 1996), there were significant associations between teaching experience and sources of occupational stress: Beginning Teachers rated remuneration as being a significantly greater source of stress than their more experienced counterparts. This is not surprising as at the time of the survey Beginning Teachers were very poorly paid. Experienced teachers rated Task Overload, Quality of Resourcing and lack of Respect for Teachers as being significantly greater sources of stress than Beginning Teachers. The experienced teacher has a much wider range of tasks than the Beginning Teacher, who is supervised by a Tutor Teacher in each school. The role of the Tutor Teacher is to assist in professional development and mentor the Beginning Teacher. The experienced teacher has no such supervisor or mentor and is relatively autonomous. Thus it is not all that surprising that the observed pattern of differences exists. The reason for experienced teachers rating Respect for Teachers as a greater source of occupational stress is not easy to explain, but it maybe that the relatively low status of teaching becomes more of an issue the longer one is involved in the profession. The keen novice is perhaps more attuned to the immediate tasks of their role at the micro level. Many of these trends are inconsistent with those observed by Manthei et al (1996) and this is further evidence of the lability of the association, between teacher biographical information, occupational stress and job satisfaction. Perhaps the fluctuations are the product of different samples, but they could just as easily be associated with particular moments in the history of our economy and the nature of teachers’ work.

The teachers were able to be divided into two clusters: Cluster One consisted of 209 teachers experiencing moderate levels of occupational stress and fair levels of job satisfaction, whereas Cluster Two consisted of 138 teachers experiencing high levels of stress and little in the way of job satisfaction. A series of regression analyses indicated that Task Overload and Disruptive Pupils independently and significantly discriminated between the two clusters. Two other sources also made independent contributions to the discrimination, and these were the Quality of Resourcing and the Quality of Administrative Support in the school.
The schools were divided into two clusters on the basis of the cluster identity of individual teachers: Cluster One schools consisted of 11 schools, the majority of whose 209 teachers experienced moderate levels of stress and fair levels of job satisfaction; Cluster Two schools consisted of 9 schools, the majority of whose 138 teachers experienced high levels of stress and little in the way of job satisfaction. Cluster One and Cluster Two schools looked very similar in terms of their decile funding level, proportion of full time registered teachers, and pupil mobility. It is obviously naïve to believe that there are straightforward relationships between stress, job satisfaction and the demographic characteristics of schools. In this survey there were schools extremely well endowed with resources in high socio-economic areas, whose teachers were highly stressed and experiencing low levels of job satisfaction. By way of contrast there were also schools in low socio-economic areas struggling for resources in which the majority of teachers were experiencing only moderate levels of stress and relatively high levels of job satisfaction. It may well be that stressors and sources of satisfaction differ according to school type, whereas overall level of stress does not. Unfortunately the number of schools in the current study is too small to undertake relevant analyses of reasonable power.

REFRENCES

