Internalization of teachers’ teaching goals: The effects of students’ self schemas and their perceived relationship with their teachers

Chi Hung Ng

Graduate School of Education
University of Queensland
Brisbane Q4072
Office No. (07) 33657343
e-mail: s207237@student.uq.edu.au

Paper Presented at the Annual Meeting of Australian Association for Research in Education, 30/11-4/12/1997, Brisbane, Australia.
Abstract

Goal orientation is currently enjoying a lofty position in motivational research in education. Little, however, has been done to trace the origins of these goal orientations. Why do students come up with a particular goal orientation? Some preliminary research has confirmed that there is a close relationship between students’ goal orientations and those held by other important social agents, like parents (e.g. Ames & Archer, 1987; Hokoda & Fincham, 1995). Nevertheless this does not offer any clue on why students come to embrace certain goal orientations. The aim of this pilot study is to assess the relative importance of two social factors, perceived teachers’ teaching goals and relationship with teacher, as well as a cognitive factor, self-schema, in affecting students’ choice of their goal orientations. Correlation analysis confirmed that all these three factors would affect students’ goal orientations as they were positively related. Regression analysis found that it was students’ self-schema that predicted their choice of goal orientations.

Introduction

The research of goal orientations has confirmed that students’ perceived purposes for learning will have important motivating effects. However, it is unknown to date about why students will come up with a certain goal orientation. It has long been recognised that teachers’ behaviours are capable of affecting students’ learning and motivation. This pilot study explored whether teachers’ teaching goals and their relationship with students would affect students’ goal orientations. Will students internalise teachers’ teaching goals and turn them into their own learning goals? Will a good student-teacher relationship help students endorse their teachers’ teaching goals? Or will students rely more on their own understanding of their selves to make decision about their own goals? The aim of this study is to unravel the relative importance of these social factors and one’s cognition in affecting students’ choice of goal orientations.

Goal orientations and their effects

Goal orientations are defined as students’ perceived purposes for learning. These goals will serve as a frame by which students make decision about their effort expenditure, persistence, use of learning strategies and depth of information processing. To date, researchers have successfully contrasted two different goal orientations namely, the mastery goal and the performance goal. Students learning with mastery goal will focus more on the learning process and try their effort to comprehend what have been taught to them. The stress is on improving one’s skills or knowledge. Mastery goal will usually lead to greater effort, persistence, willingness to accept challenge, deeper processing level and greater use of learning strategies. As a result, mastery goal is usually associated with higher achievement.

In contrast, students learning with performance goal will focus more on outperforming other, showing that they are smart. The key concern is then not the learning process but the end result or the level of performance. Performance goal will usually lead to competition, ability consciousness, surface processing of information, less use of learning strategies and subsequently a relatively lower achievement level__ADDIN ENRef__(Ames, 1992; Ames & Archer, 1988; Bouffard, Boisvert, Vezeau, & Larouche, 1995; Dweck, 1986; Elliott & Dweck, 1988; Graham & Golan, 1991; Meece, 1993; Nolen, 1988; Pintrich & De Groot, 1990)__.
Besides these two types of goal orientations, there are certainly other goal orientations which will have bearing on students’ learning. Given the fact that learning is socially embedded, it is then important to unravel the effects of social goals on learning (Ng, 1997). Initial results from Wentzel (Wentzel, 1989; Wentzel, 1993) have shown that social orientations like social responsibility would have positive effects on learning. More recently, Miller, Greene & Montalvo (1996) found that pleasing teachers would affect the use of self-regulation, effort and persistence. In this research we will look at students’ socially appropriate behaviours like helping other to learn or trying to be useful to the community. This social orientation is labeled as social solidarity goal. Students having these goals will probably have a very strong bond with their fellow peers. They learn in order to help their friends.

In addition to social goal, functional goal is another key concern in this research. Students are said to have functional goals when they learn for the sake of utilising the functional aspects of their studies. In a strict sense, for example, students learning in order to get into university or certain study stream are said to have functional goal for they see the values of their studies. In a broad sense, students learning for the practical value of the knowledge like applying mathematical skills to daily lives are also said to have functional goals. The construction of functional goal is in line with the motivational constructs like Eccles’ task utility value (Eccles et al., 1983), Miller’s future consequences (Miller, Greene, & Montalvo, 1996), as well as Markus and Nurius’ possible selves (Markus & Nurius, 1986).

The main research question is then why students come up with a particular learning goal. Theoretically, students’ goal orientations can be traced back to either their social environment or their own cognitive characteristics. Studies in parental styles, influence of friends and teachers’ expectancy effects have consistently corroborated the importance of social influence on one’s behaviours (e.g. Ames & Archer, 1987; Berndt, Laychark, & Park, 1990; Steinberg, Lamborn, Darling, Mounts, & Dornbusch, 1994). This study has singled out two social factors, perceived teachers’ teaching goals and relationship with teacher, which are believed to have effects on the development of students’ learning goals.

Aside from factors in the social environment, students’ own understanding of themselves will also be an important source by which students make decision about their own learning goals. This study has isolated self-schema as a factor from students’ own cognitive dimension that will influence their choice of goal orientations. It is then the aim of this study to assess the relative importance of these two set of factors in affecting students’ goal orientations.

Social Factors: Perceived teaching goals & Relationship with teacher

A plethora of research on the effects of teachers’ behaviours on students’ learning and motivation has been carried out. Of special relevance to this study is the research on teachers’ teaching styles and the resulting classroom environments. Maeha & Stalling (1972) have found that teachers who emphasised on evaluation and performance would end up leading students to less engaging pattern of learning. In contrast, teachers who emphasised on mastery and learning would bring beneficial effects to students’ learning and motivation. Similarly, studies on learning autonomy have contrasted the differential effects of controlling versus autonomous classroom environment. Students will always enjoy greater motivation to learn and yield better results in classrooms in which students’ autonomy have been cultivated (Ryan & Stiller, 1991). Aside from these dichotomous classifications of classroom environments, Ames (1987) described three contrasting classroom structures, competitive, individualised and cooperative. These classroom structures are capable of
sparking off different motivation systems in students. They are associated with different information cues, emotional states and attribution patterns among students.

In line with all these past research, I theorise that teachers’ teaching goals will have effects on students’ learning goals which in turn will affect their learning and motivation as well as achievement. The construction of teaching goals is in harmony with Ames’ understanding of classroom structures. Teachers’ teaching goals are defined as students’ perceptions of teachers’ purposes for teaching a specific subject. They are defined from students’ perspective for we think it is students’ interpretations of their teachers’ teaching goals that will have important implications for their choice of learning goals.

Following the classification of learning goals, perceived teachers’ teaching goals are classified into mastery, performance, functional and social solidarity. Teachers perceived to be teaching with an aim to help students to learn and master the knowledge are said to have mastery teaching goal. Teachers who emphasise strongly on grades and achievement are classified as having performance goal. Teachers who emphasise strongly on the usefulness of the knowledge in daily lives and its importance for future career and studies are having a functional goal. Finally, teachers aiming at cultivating a cooperative and considerate learning environment as well as helping students work with each other are having a social solidarity goal.

The question is whether students will adopt the same goals for their learning. For example, will students who perceive that their teachers are teaching with a mastery goal internalise the goal and end up learning with a mastery emphasis? It is assumed that students’ learning goals will correlate with corresponding teachers’ teaching goals. In other words, students who perceive that their teachers are teaching with a mastery goal will learn with mastery goal. The same logic applies to all the other goals.

The relationship between student and teacher is as vital as teachers’ teaching goals in affecting students’ learning goals. Ryan & Stiller _ADDIN ENRef__(1991)_ suggested that relationship factor was the key component to students’ learning and motivation. It is in a safe, warm, and supportive environment that learning will be possible. In the same way it is only when there is a positive relationship between teachers and students that students will be able to see the reasons why their teachers are teaching in that particular way. In other words, positive relationship helps students endorse teachers’ way of teaching and find their reasons for learning. Relationship that are warm, responsive, harmonic and stable will actually benefit the communication of values, in this case, goal orientations for learning. Students will find it easier to adopt what have suggested to them from their teachers if the relationship among them is harmonious. On the contrary if there is a conflicting relationship between teacher and students, teachers’ suggestion of learning goals will only be neglected or argued against.

Cognitive Factor: Self-schema

Self-schema is a potential cognitive factor that will control students’ choice of goal orientations. The concept of self-schema is derived from the work of Markus and her colleagues. Markus defined self-schema as the cognitive generalisation about the self. It is formed when one attempts to organise, summarise or explain one’s own behaviours in a particular domain _ADDIN ENRef__(Markus, 1977)_ . Markus held that self-concept was not a unitary, monolithic entity but a multifaceted, dynamic phenomenon formed by a system of self-schemas _ADDIN ENRef__(Markus & Wurf, 1987)_ . Other theorists basically followed her definition _ADDIN ENRef__(Alexander, 1997_; _ADDIN ENRef__Pintrich, 1994)_.
Self-schema has great implications for motivation research because it serves as an organizer that mediates and regulates behaviours. In addition, self-schema also provides incentives, standards, plans, rules and scripts for behaviours. Research in social psychology has substantiated the functional role of self-schema. Self-schema was found to have bearing on information processing about the self (Markus, 1977), forming perceptions about other (Lewicki, 1984; Markus & Smith, 1981) and drawing inference from ambiguous social information (Catrambone & Markus, 1987).

Applying the concept to education, Martinot & Monteil (1995) found that students having success academic self-schemas were faster in responding to success traits and retrieved more behavioural examples of success traits than those having failure-academic self-schemas. Lips (1995) found that self-schemas in maths/science not only affected one’s achievement level but also one’s decision of further studies. The work of Garica & Pintrich (Garcia & Pintrich, 1993; Garcia & Pintrich, 1994) represents further effort in applying the concept to educational studies. They theorised that self-schema in education could further be classified into four dimensions: Affect, temporal, value, and efficacy. Affective dimension denotes that people’s affective state will be influenced by their current self-schema. The temporal dimension distinguishes between the past, present and future selves. Value dimension taps on the centrality and importance of the self-schema in defining one’s identity or core conception. Efficacy dimension refers to the belief that one has the ability to attain, maintain or avoid a particular self-conception.

An earlier study employing this conception of self-schema has found that students regulated their achievement behaviours as a function of their particular self-schema. Students reported higher level of volitional control over their attention, coding and learning environment when they rated that being a good student was important for them in present and in the future and they also reported having high level of efficacy in maintaining this positive self-schema. The reverse was true for students having a negative self-schema of ‘bad student’ (Garcia & Pintrich, 1993).

The current research will follow Pintrich & Garica’s conception of self-schema. We will look into the effects of students’ self-schemas in learning mathematics on their choice of goal orientations. Positive schematic students will be characterised by having positive affect, a strong efficacy belief, high future aspiration in learning mathematics. They will also see success in mathematics important to their identity. In contrast, negative schematic students will not see the importance of mathematics achievement. They will be characterised by negative affect, low efficacy belief, and low future aspiration in learning the subject.

It is therefore assumed that students who are positively schematic in mathematics will score high in every goal orientation. It is because that positive self-schema in learning mathematics provides them with a great motivational force to master the knowledge (mastery goal), see its functional values (functional goal), to perform excellently in order to maintain this positive schematic concept of themselves (performance goal), and to help other (social solidarity goal). The reverse is true for those having negative self-schemas.

The aim

The main aim of this research is to locate factors that will affect one’s goal orientations. More specifically, this study look into the relative importance of cognitive and social factors in affecting students’ goal orientations. Social factors include students’ perceived teaching goals and relationship with teacher. Self-schema is the only cognitive factor in this study.
Hypotheses

Our main hypotheses are:

Teachers' teaching goals will positively relate to students' learning goals.

Teachers' teaching goals will be congruent with students' learning goals. For example, students who perceive their mathematics teachers are teaching with an emphasis on mastery goal will usually score high in mastery goals.

Teacher-student relationship will relate positively to both learning goals and perceived teaching goals.

Students' self-schemas will relate positively to their learning goals. Positive schematic students will score higher on all goal orientations than negative schematic students.

Students' self-schemas will be a better predictor of their goal orientations than teachers' teaching goals and their reported relationship with teachers.

The Survey

Subjects

The subjects in this pilot study were 92 year 10 mathematics students of a high school in the Metropolitan West Region of Brisbane. Year 10 maths students were chosen as the target group for year 10 is the last year in high school in which all the students are still required to do mathematics. It is also the year in which students will have to make the decision whether they will study mathematics in the next year or not. It can then be assumed that by year 10 students will have gathered enough information about themselves in learning mathematics and will have established clear understanding of their selves in this domain. In general by year 10 students' self-schemas of mathematics will have been developed fully. Among the 92 subjects, 47 were boys and 45 were girls. Their age ranged from 14 to 19, with a mean of 15.5. Most of the subjects were white Australians (53%). Asian accounted for 23%. The rest was made up of minority groups from Europe, Middle East and Aborigines.

Instrument

In order to gather information on students' goal orientations, self-schemas and relationship with their teachers, students were asked to participate in a survey using the Mathematics Learning Motivation Questionnaire (MLMQ). MLMQ contains 46 items, dividing into four different sections. The first section contain 10 questions asking students' perceptions about their teachers' teaching goals. The second section has 21 questions about students' self-schemas. This section also includes items on students' past achievement and future expected grade. Section three contains five questions that tap information about students' perceived relationship with their teachers. The last section contains 10 questions that assess students' own learning goals (Refer to the Appendix for sample items). In general, the questionnaire enjoyed a high reliability. The Alpha values ranged from .60 to .89 in this survey (See table 1).
Table 1: Reliability Alpha Values

Procedure

Parental permission was sought before students were allowed to participate in the study. The survey session was held in students’ regular classroom during their mathematics period. The researcher was there to administer the survey. After briefing on the purpose of the survey, students then filled in the questionnaire on their own. The survey session ran for about 30 minutes for each class.

Analysis & Results

Each questionnaire was coded. Items were checked for their harmony with other items in terms of their directionality. Items that were negatively related to each other in the same scale were reversely coded. Items measuring the same scale were then collapsed together to form a collective score for that scale.

Correlation analysis was employed to delineate relationship among different scales. Stepwise multiple regression was used to check for the relative predictability of all these factors on students’ goal orientations.

Correlation

Students’ learning goals and teachers’ teaching goals

Our survey showed that students’ learning goals were highly correlated with teachers’ teaching goals. Table 2 reveals that students’ goals correlated positively with teachers’ teaching goals. In addition there was a high level of congruence between learning goals and their corresponding teaching goals. Students having mastery goals also perceived that their teachers were teaching with a mastery emphasis ($r=.42, p<.0001$). In the same token, students having performance goals, social solidarity goals and functional goals also perceived that their teachers were teaching with the corresponding teaching goals. Note that the highest correlation values between learning and teaching goals were found in their corresponding pairs except in functional goal. ($R=.42, p<.0001$ for mastery goal; $r=.38, p<.0001$ for performance goal; $r=.46, p<.0001$ for social solidarity goal). In general these results supported the hypothesis that teachers’ teaching goals were congruent with students’ learning goals.

Students’ learning goals and their perceived relationship with teachers

Students who were strong in mastery goal and social goal reported that they had a good relationship with their teachers ($r=.48, p<.0001$; $r=.39, p<.0001$). However, performance and functional goal were not statistically significant in correlating with relationship with teacher.
On the other hand, relationship with teacher was positively related to all perceived teaching goals with exception in teachers’ performance goal. In other words, students having a good relationship with their teachers will have a better understanding of teachers’ teaching goals.

Table 2. Intercorrelations of learning goals, teaching goals, relationship with teacher, and self-schemas

Self schema and learning goals

All learning goals were significantly related to self-schemas. Correlation between mastery goal, functional goal, performance goal, social goal and self-schemas were $r=.80, p<.0001$; $r=.58, p<.0001$; $r=.22, r=.61, p<.0001$ respectively. This shows that self-schema is an extremely important factor in determining students’ learning goals.

In general the correlation analysis confirmed that students’ learning goals were related to teachers’ teaching goal. Students’ perceived relationship with teacher and their self-schemas also varied positively with their goals. We can then conclude that teachers’ teaching goals, relationship with teacher and self-schema are important factors that will affect students learning goals. What is of interest is the relative importance of these factors. Multiple regression analysis below will answer this question.

Regression

The following regression analyses were conducted at a significance level of $p < .05$ for inclusion in the equation. Each goal orientation was regressed, using a stepwise procedure, to all teachers’ teaching goals, other learning goals, self-schema and relationship with their teachers.

Predication of mastery goal

In predicting students’ mastery goal, only self-schema and relationship with teacher entered into the final equation. This equation accounted for 70% of the variance in mastery goal ($F[2,77]=87.87, p<.0001$). The multiple regression coefficient revealed a high correlation between these two predictors and the criterion variable ($R=.83, p<.0001$). Self-schema was the key determinant in predicting mastery goal ($=.74, p<.0001$). This implies that students will be more willing to learn to comprehend or master mathematics knowledge if they have a positive self-schema in learning mathematics.

Predication of functional goal

In predicting the adoption of functional goal, self-schema, students’ mastery and performance goal were the three significant predictors. They collectively accounted for 49% of the variance in functional goal ($F[3,76]=24.11; p,.0001$). Their correlation with functional goal was strong ($R=.70, p<.0001$). Self-schema was again the most important predictor ($=.75, p<.0001$). It was followed by students’ performance goal ($=.36, p<.0001$) and mastery goal ($=.33, p<.05$).
Again students who have a positive self-schema will be more likely to adopt functional goal in learning mathematics. Students’ performance goal was also an important predictor of functional goal. This can be explained by the fact that functional goal may have been seen as an indication of performance. Functional goal is defined in terms of students’ future academic or career success in mathematics. Learning mathematics is seen as functional for getting entry to university program or getting a desired job. It is then possible for some to perceive that achieving in these functional goals would equate to high performance.

Mastery goal though entered into the equation, it accounted for a very limited variance in functional goal. This is implied in its negative beta value.

Prediction of performance goal

Students’ performance goal was predicted by students’ social goal (β= .51, p<.0001), functional goal (β= .43, p<.0001), and self-schema (β= -.31, p<.05). Together they accounted for 39% of the variance in performance goal (F[3,76]=16.49, p<.0001). This final equation suggests that students’ goals are related to each other. Wanting to help others and seeing the utility of mathematics achievement will lead students to put more stress on performance.

Table 3. Regression Weights for Predictor variables entering the equation

Self-schema unexpectedly was the least important factor in the equation. The unexpected result can be accounted for by the construction of performance goal. Performance goal was formed by both positive statements like “I study maths because I want to get good results” and negative statements like “I study mathematics because I do not want to look stupid”. Though reliability of the performance goal scale was high (β=.75), “wanting to get good results” and “not looking stupid” certainly represent two different approaches to performance. Our construction is not sensitive in discriminating these two orientations, which might therefore have led to the poor predictive ability of self-schema.

Prediction of social solidarity goal

Students’ performance goal (β= .35, p<.0001) and teachers’ social solidarity goal (β= .20, p<.05) and self-schema (β= .44, p<.0001) were the three factors in the final equation that predicted students’ social solidarity goal. The factors in combination accounted for 53% of the variance in students’ social goal (F[3,76]=28.93, p<.0001). Students who had a positive self-schema and strongly wanted good results were also having a desire to help other in learning mathematics. In addition, teachers’ stress in developing a cooperating classroom was also a key factor in leading students to develop social solidarity goal for learning mathematics.

Taken together, self-schema stood out as the most important predictor of all goal orientations except in performance goal. Relationship with teacher was a significant factor in predicting mastery goal only. Teachers’ teaching goals, as it was expected, were not important predictors for students’ goal orientations except in social solidarity goal. The
results of regression analysis supported the hypothesis concerning the relative importance of these three factors in predicting goal orientations.

Further analysis: gender, achievement level and schematicity

There are studies highlighting the importance of gender in determining learning motivation for mathematics (e.g. Hart, 1990; Pintrich & De Groot, 1990). Additional analysis was therefore carried out with gender as the key factor. The descriptive analysis in Table 4 reveals that male students consistently scored a little bit higher than females. However, because all the scores for both male and female students were close and they were pointing to the same direction, gender then does not warrant further analysis as a separate factor since no significant difference in variance is expected.

Table 4: Mean & Standard deviation for Gender, Achievement Levels and Self-schema Types

Differences were, however, found in students’ reported levels of achievement and self-schema types. The diagrams below show that students who reported themselves as high achievers in mathematics showed a strong endorsement of all goals. And they also had a very strong understanding of their teachers’ teaching goals. These students also reported to have very good relationship with their teachers. Most importantly, they held a very strong positive self-schema in learning mathematics.

On the other hand, low achievers had fewer goals and endorsed less of these goals. They also seemed to endorse less of teachers’ teaching goals. This may be related to their less close relationship with their teachers. They also showed a very negative self-schema in learning mathematics. This contrasting pattern was also found when the subjects were classified according to their self-schema types. Positively schematic students revealed a pattern that was similar to high achievers’ whereas negatively schematic students showed a pattern that was close to low achievers’, implying that self-schema is closely related to one’s achievement.

Discussion

Our analysis showed that there was a close relationship between students’ learning goals and perceived teachers’ teaching goals. Students who perceived that their teachers were teaching with a particular goal would show high score in the corresponding learning goal. This is an encouraging result for it points to the effects of teachers’ teaching emphasis on students’ learning motivation. Given the fact that students’ goal orientations will lead to different pattern of cognitive engagement, it is then essential for teachers to put stress on those learning goals that will yield a more adaptive cognitive engagement pattern. Research has confirmed that mastery goal will lead to a more adaptive cognitive engagement, which will subsequently enable students to reap better results (Ames, 1992; Meece, 1993; Meece, 1994). It is then logical for teachers to teach with an emphasis on mastery and expect their students to respond favourably by learning with the same goal. In addition, a good relationship with students will certainly help, especially in the case of promoting mastery and functional goals.
Nevertheless, this does not mean that by manipulating teachers’ teaching goals, one will always find a corresponding shift in students’ learning goals. Those who hold this reductionist notion of social determinism will be disappointed as students’ goal orientations relate more strongly to self-schema than teachers’ goals. In other words, it is through self-schema that students will decide which goal orientation they will take on. Students who hold a positive self-schema in a subject domain will be more likely to have mastery, functional and social solidarity goal than students having a negative self-schema. Students’ self-schemas in this case will serve as a filter assessing incoming information in the light of their internal self-configurations.

In addition the significance of self-schema in this study draws us to rethink the expectancy effects of teachers’ differential treatment. Studies in teachers’ expectancy effects shed light on the importance of teacher behaviours and expectation and heighten our awareness of teachers’ behaviours and their effects on students’ learning. Nevertheless, such findings will only be substantiated if students are assumed to be the lone passive receivers of these treatments and expectations. Such an assumption is too bold to be true for every individual can have the ability to summon their own will to determine how to respond to external prompts. Ignoring this fact is simply suggesting students are incapable of exercising their own cognitive faculty, which is a violation of the fundamental principle in cognitive science. This study offers evidence that students’ self-schemas outweigh teachers’ behaviours in affecting students’ learning pattern. Self-fulfillment prophecy sets off by teachers’ differential expectations will not be substantiated if students are holding extreme self-schemas which are at odds with teachers’ expectations.

The importance of self-schema will also have implication for intervention in students’ motivation. Given the positive effects of mastery goal on students’ learning engagement and subsequently their achievement, researchers have suggested intervention program that helped teacher promote a mastery learning environment (Ames, 1992). This type of intervention stresses on the manipulation of the external environment that are congenial to student learning in order to facilitate the promotion of mastery goal. In the light of the current finding, the success of such intervention will hinge not just on the changes in the external environment but also on students’ own self-schemas. In our case, it is students’ self-schemas that account more for their choice of motivation goals. However, self-schema has been overlooked generally in this type of intervention program.

Self-schema takes years to establish. A sudden change in it within a short period of time is almost impossible. It is only through consistent and persistent efforts from all teachers that students will eventually get the message that learning is fun and they are capable of doing it. A positive self-schema in the respective subject-domain will then be able to evolve within students’ self-identities. Since the whole process of change takes time, it is then more desirable to start helping students when they are in their junior years. Teachers looking for immediate effects will be put off.

Further efforts are needed to unfold the processes by which self-schema in a domain is formed. Students’ self-schemas and their goal orientations may probably have been established through interaction and experience with their past teachers along the way. In addition, we have to assess the relative importance of other significant social agents like parents and friends as well.

Conclusion

This survey has offered light on the factors that determine students’ goal orientations. Though the social factors, perceived teachers’ teaching goals and relationship with teacher, have correlated positively with students’ goal orientations, it is students’ own cognition, their
self-schemas, that stands out as the most important factor in predicting their goal orientations. What makes students learn with a particular reason is related to their self-understanding regarding to a specific subject domain. Who you are directly defines why and subsequently how you approach learning a subject or a task. The relative importance of self-schema over teachers' teaching goals in predicting students' goal orientations implies that individual’s cognition will have a role in filtering the social influence.

It is important to pinpoint at the end that the results of this study should not be generalised as true for other subject domains and age groups in school. More studies will be required to determine the relative importance of self-schema across various subject domains and age groups.
Reference

