INTRODUCTION

This paper reports the results of an analysis of the effect of secondary school enrolment size on the allocation of teacher time. Two aspects of teacher time usage are examined: the allocation of teacher time to classroom teaching and to other designated duties; and the extent to which teachers specialise in their classroom teaching.

There are at least three reasons for the study of teacher time use in schools. First, expenditure on teachers' salaries constitutes the largest proportion of education budgets. Second, there is a growing body
of evidence on the importance of the quantity and quality of teacher time for student learning (see, for example, Fisher & Berliner, 1985). Finally, the organisation of schooling gives school administrators and teachers considerable discretion over how their time is allocated amongst different tasks. No matter how centralised a particular school system may be, the technology of schooling allows considerable scope for school-level administrators and teachers to shape the flow of resources to and within classrooms (Levin, 1980).

The paper has five major sections. In the first the theoretical linkages between school enrolment size and teacher time use are discussed. The second section describes the data base and methodology used in the study. The results of the analyses are presented in the next two sections. Respectively, these are concerned with the relationship between school size and the allocation of teacher time between broad functions, and the extent to which teachers specialise in their class teaching. The paper concludes with a discussion of the results and their implications for further research.

THEORETICAL BACKGROUND

The highly labour-intensive nature of schooling suggests that there are few sources of ‘pure’ scale economies in school operations (Lenahan, 1983). However, by relaxing the assumptions of the pure case two potential sources of scale economies in the use of teacher time can be identified: the fixed costs associated with the supply of administrative and classroom support services in schools; and the productivity gains from greater opportunities for teacher specialisation in class teaching.

Every school, no matter what its size, needs to allocate personnel resources to administration and classroom support. To the extent that such resources are indivisible it is likely that as schools increase in size proportionately fewer resources need to be allocated to these functions. Support for this proposition is provided by the general literature on organisational size, which suggests that as institutions become larger the administrative ratio (i.e., the ratio of administrative to ‘production’ workers) tends to decline (Blau, 1973; Tarter, 1983). The corollary is that in large organisations a relatively high proportion of personnel resources would be allocated to ‘core’ productive activities. However, since an increase in organisational size is generally associated with a growth in organisational complexity, the concomitant need for coordination and management suggests that the administrative ratio is likely to decline at a decreasing rate.

Eventually, of course, it is possible that once organisations exceed a certain size the administrative ratio may start to rise, that is, that the relationship between organisational size and the allocation of resources to administration is U-shaped. Beyond a certain enrolment level the demands of managing bigger schools may require administrative services to increase at a proportionately faster rate than student numbers. For example, a strategy sometimes used by large schools to
create a more personalised atmosphere is to organise the school into several subschools (Sturman, 1982). If each subschool required its own administrative and support team the average proportion of teacher time to allocated to administration in such schools could be relatively high.

These hypotheses have been little investigated in school settings. One of the few empirical studies is by Ellem (1981) who analysed resource allocation in six government secondary schools in New South Wales. Amongst these schools, which ranged in size from about 300 to 1000 students, there was a slight negative relationship between school enrolments and the percentage of teacher time designated for administrative functions. Correspondingly, there was a slight positive relationship between school size and the percentage of teacher time designated for class teaching. The present study examines whether these relationships apply across a larger number of schools and a broader enrolment range.

There are grounds for expecting, though, that the centralised determination of teachers’ working conditions mean that there will be little variation between schools of different sizes in the broad allocations of teacher time. For example, the detailed study of teacher time use in English secondary schools conducted by Hilsum and Strong (1978) concluded that:

There was no area of the teacher’s class-time day which appeared to be materially affected by the size of the establishment in which he taught. Even in the time consumed by movement around the school campus, there were no significant differences between schools of varying size. (p. 108)

Admittedly, the size range of schools examined by Hilsum and Strong was relatively narrow (from about 600 to 1000 students). However, their work suggests that the proportions of the teaching week that are designated for class teaching and other activities are such important industrial issues that strong pressures exist for uniformity of treatment between and within schools. Overall, therefore, while there are some grounds for expecting school size to affect the allocation of teacher time between broad functions the differences between schools are likely to be small. This suggests that the potential for realising any scale economies in this regard may be quite limited.

Teacher Specialisation
There is far less doubt exhibited amongst the literature about the potential scale economies resulting from greater specialisation in classroom teaching. Even Lenahan (1983), who is relatively sceptical about the general case for the existence of scale economies in schools, concluded that 'if there is a promising source of economies of scale in schools it seems to lie in the specialised deployment of teachers' (p. 8).

The most detailed examination of the conceptual links between teachers' subject specialisation and productivity is provided by Monk (1986).
exist between the breadth and depth of knowledge that teachers are able to acquire during their training. Because the resources for acquiring knowledge and skill are finite, it is difficult for individuals to achieve a high degree of competence across a wide range of broad subject areas. Thus, teachers' productivity is likely to vary more widely between areas than it is between different courses within a broad subject area. The corollary is that the larger the number of areas that a teacher is assigned, the less likely that the teacher will be highly productive in each: 'tradeoffs exist between the pursuit of excellence in one area and the pursuit of competence in additional areas' (p. 7).

Given that teachers differ in their productivity profiles between and within subject areas, larger schools have more scope to take advantage of the different capacities of teachers. The higher the level of student enrolments, the greater the number of classes that needs to be formed in any given subject area, other factors equal. In such circumstances there is more opportunity for teachers to be assigned classes in just one or two subject areas. In a small school, by contrast, the limited teacher numbers mean that teachers are more likely to teach classes from outside the subject areas in which they are most productive.

Empirical support for the proposition that there are greater possibilities for subject specialisation in large schools is provided by Riew (1966) who found that the average number of different courses taught by teachers declined from 3.8 in the smallest schools in his sample (less than 200 students) to 1.6 courses in the largest schools (more than 1600 students). Similar results were reported by Monk (1987): a decline from an average of 3.3 different courses per full-time teacher in schools with 100 students to 1.9 courses in schools with 1500 students. In the case of Monk's sample, however, the average number of different courses per teacher started to rise again once schools exceeded about 1500 students until it reached an average of 2.5 courses per teacher in the very largest schools (3000 students). Monk attributed the latter phenomenon to the fact that, although these schools were large, they were located in school districts that had experienced enrolment declines. As a consequence, teachers in those schools had been assigned classes from a larger number of different subject areas.

The latter finding suggests that there are factors other than school size that can affect the extent to which teachers specialise in the subjects that they teach. As noted by Glasman and Nevo (1988), administrators' decisions on the classes to which teachers are assigned have to take account of a wide range of factors including individual teachers' capacities, student needs, timetabling constraints, and (occasionally) parental preferences. The relative importance of these influences is likely to vary widely amongst schools which suggests that schools of similar enrolment size will differ in the extent of subject specialisation. To illustrate, Coatesworth, Hudson, Kay, and Sproat (1982) found that school size had only a limited effect on subject specialisation in several regions in England:

It would appear that multi-subject teaching is the product of school policy rather than size of school. It would be instructive
to know to what extent it is the outcome of conscious planning (e.g. a belief in the value of the form-teacher who covers a large area of the curriculum with his form), how far the result of external pressures (e.g. inability to appoint specialist staff in some subjects with the result that their teaching is fragmented among a number of non-specialists) and how far from poor time-tabling. (p. 5)

The preceding discussion suggests that although there is likely to be a positive association between subject specialisation and school size, considerable variation between schools of similar size can be expected. There are also grounds for expecting that the relationship with size will be curvilinear, that is, there will be an upper limit on the extent of teachers' subject specialisation. Not only are schools likely to resist the creation of the very small classes that are often associated with a high degree of teacher specialisation, it is also probable that:
There are limits to how good one can become at teaching a particular subject matter. It is also conceivable that even if such limits do not exist, that there are drawbacks including boredom that can stem from teaching the same course numerous times. (Monk, 1986, p. 14)

DATA BASE AND METHODOLOGY

Investigation of the hypotheses developed in the previous section requires highly disaggregated data on school operations. The present study makes use of official data on teachers' time allocations collected from schools by the Victorian Ministry of Education; the data refer to 1984. For each teacher employed in schools information is available on every timetabled teaching class assignment that they have - the subject concerned, the number of teachers involved in taking the class, the number of sessions and minutes per week that the class operates, the number of weeks per year that it runs, the number of students enrolled in the class, and the year level(s) from which they are drawn; the nature of any nonteaching duties that the teacher has been allocated; and the number of minutes per week designated for nonteaching duties. The data are available for 95 per cent (246 schools) of Victorian government high schools that enrolled students in each of years 7 to 12. The schools ranged in enrolment size from 76 to 1234 students with a mean enrolment of 639. In all, data on teacher time usage are available for just under 12,500 full-time equivalent teachers.

Some Qualifications to the Data
Before the results are discussed in detail several qualifications should be noted. First, only those time allocations that were contained within the span of the designated school teaching week (most commonly, 25 hours) are included in the analyses. Second, in regard to the time designated for administrative and classroom support services, the data refer to the time allowances provided for the performance of these duties, and not to the time that they actually involved. Thus, the amount of time recorded for these duties almost certainly understates the actual time that teachers allocate to those tasks. Correspondingly, the time that is termed 'nondesignated' in the analyses almost certainly overstates the actual amount of discretionary time available to teachers.
Third, the calculation of the total amount of teacher time available to a school includes the time of all the teachers employed at the school. Some of these teachers (for example, principals and careers teachers) had very few class teaching duties at all. Therefore, the average percentage of time that was calculated to be designated to class teaching is almost certainly an underestimate for those who are predominantly classroom teachers. The final, and perhaps most important, qualification concerns problems with the data set itself, particularly in regard to teachers’ nonclassroom duties. There were considerable inconsistencies between schools in the manner in which this information was recorded and a number of editing assumptions were needed to prepare the data for analysis. Accordingly, the results concerned with the percentage of teacher time designated for administrative and classroom support services should be treated with caution.

Measuring Teacher Time Use

In the present study teacher time use in schools was conceptualised as having three broad components: classroom teaching (including teaching students on a withdrawal basis from regular classes); other designated duties for which teachers received a time allocation (administration, curriculum development, careers, pupil welfare, library, and so on); and ‘free’ or non-designated time (that is, the time not allocated to either of the other two categories). These broad categories are similar to those used by Ellem (1981).

Teachers’ specialisation in classroom teaching was examined in terms of the average number of class teaching assignments that teachers are allocated in each school, the average number of different subjects that those assignments cover, and the number of different year levels that those classes were drawn from. It is assumed that the fewer the number of classes assigned to teachers, and the fewer the number of different subjects and year levels that they teach, the more specialised they are, other factors equal. Ideally, the study of teacher specialisation requires data on the extent to which teachers’ class assignments match the areas of specialisation in their teacher education courses. Such data were not available for the present study.

Estimating the Effect of School Size on Teacher Time Use

Stepwise regression analysis was used to estimate the effect of school enrolment size on each of the measures of teacher time use outlined in the previous section and to test for nonlinearity in the relationships. Statistical controls were used for two other variables that were either known or hypothesised to affect resource use in schools. The first of these was whether a school was classified as serving a disadvantaged catchment area and therefore entitled to supplementary resources. Of the 246 high schools included in the study 46 (19 per cent) were classified as disadvantaged; on average, those schools were allocated six per cent more teachers than nondisadvantaged schools of equivalent enrolment size. The relatively low student-teacher ratios in disadvantaged schools are likely to affect patterns of teacher time use. It is also possible that the nature of the student population enrolled in those schools may affect within-school resource flows relative to nondisadvantaged schools. Therefore, it was judged important to control for school disadvantage in the analyses.
The second control variable used in the analyses was the percentage of a school's population that was enrolled in years 11 and 12. In Victoria, at least, students in the senior year levels tend to study fewer subjects than students in years 7 to 10 (Ainley, Reed, & Miller, 1986) which implies that, on average, senior classes are allocated more minutes per week than junior classes. The differences in time allocations between the subjects in the different year levels suggested the need to control for the year-level composition of the schools. This was achieved by a variable that measured the percentage of senior students enrolled in the school. Amongst the 246 schools in the present study this percentage ranged from 12 per cent to 40 per cent, with a mean senior enrolment of 24 per cent.

Therefore, the model to be estimated had the following general form:

\[T_i = b_0 + b_1 E + b_2 \text{DISAD} + b_3 \text{SENIOR} \]

where \(T_i \) = the measure of teacher time use concerned;
\(E \) = the number of students enrolled at the school;
\(\text{DISAD} \) = 0 if the school is not classified as disadvantaged, and = 1 if the school is classified as disadvantaged; and
\(\text{SENIOR} \) = the percentage of the school's students that is enrolled in years 11 and 12.

Almost certainly the three independent variables included in expression (1) do not capture the full range of factors that influence teacher time use in schools. However, to some extent the likely importance of other factors can be assessed by the proportion of variation that the three identified variables explain. Only results that were significant at the 95 per cent confidence level are reported in the discussion that follows.

THE ALLOCATION OF TEACHER TIME BETWEEN BROAD FUNCTIONS

Table 1 provides descriptive data on the average percentage of teacher time designated for administrative and classroom support services, class teaching, and nondesignated activities in schools of different sizes. For ease of presentation the data are presented as means for groups of schools of similar enrolment size. The results of the stepwise regression analyses are presented in Table 2.

Administrative and Classroom Support Time

As can be seen from Table 1, on average 14.6 per cent of total teacher
time per school was designated for the provision of administrative and classroom support services. The data indicate that teachers in large schools tended to have a slightly lower percentage of their time designated for administration and classroom support than did teachers in relatively small schools. The correlation coefficient between this aspect of teacher time use and school size was -0.45, which supports the hypothesis that there are scale economies in the provision of administrative and classroom support services.

Table 2 indicates that the relationship between school size and the percentage of teacher time designated for these activities was best described by a semilogarithmic function. As school size increased, the rate of decline in the percentage of teacher time designated for administrative and classroom support services itself declined. There was no support for the proposition that the rate of decline would eventually be reversed (i.e., that the curve was U-shaped), at least in the enrolment range available to this study. School enrolment size accounted for only a modest proportion of the variation between schools in the percentage of teacher time that was designated for the provision of administrative and classroom support services (the partial $R^2=.21$). Table 2 also shows that, on average, teachers in disadvantaged schools had a slightly higher percentage (by 1.37 percentage points) of their time designated for these duties, other factors equal. Unfortunately, the data did not permit a more detailed analysis of the particular activities to which this additional time was allocated.

Class Teaching Time
Table 1 shows that on average 58.7 per cent of the total teacher time available to each school was designated for class teaching. In this instance the relationship between the designated percentage of teacher time and school size was positive. In the smallest high school in the study (76 students) 56.3 per cent of available teacher time was designated for class teaching. In general as schools increased in size this percentage also rose, although there was quite a deal of variation between schools of similar enrolment size. This variation is reflected in the relatively modest correlation coefficient of 0.34 between the percentage of teacher time designated for class teaching and school size.

As recorded in Table 2, there was no evidence of a curvilinear relationship between the percentage of class teaching time and school enrolment size. On average, each additional 100 students was associated with an increase of 0.3 percentage points in the percentage of teacher time designated for class teaching, other factors equal. On average, disadvantaged schools allocated 1.5 percentage points less of teacher time to class teaching than did nondisadvantaged schools of similar size. It is possible that the relatively favourable student-teacher ratios in disadvantaged schools provided more scope to use teachers' time in ways other than in direct classroom teaching. If so, this suggests an important point about the relationship between the allocation of teacher time and school size: that the parameters of that relationship will be shaped by the overall staffing context within which schools work.
There was a slight, negative relationship between the percentage of a school's students enrolled in years 11 and 12 (SENIOR) and the percentage of teacher time designated for class teaching. On average, an increase of one percentage point in the value of SENIOR was associated with a decline of 0.08 points in the percentage of teacher time in class teaching, other factors equal. The reasons for this relationship were not clear. One possible explanation is that since senior students generally spend some time in private study, schools with a high proportion of senior students may have required less direct class teaching time. However, further investigation is required to establish the basis of this particular result.

Nondesignated Time
The final column of Table 1 records the percentage of teacher time that was not designated to either of the other two categories of teacher activity. On average, 26.6 per cent of the teacher time in each school was nondesignated. There appeared to be little difference between schools in the average proportion of teacher time that was nondesignated, and school size played only a minor in explaining the differences that did exist. The correlation between this aspect of teacher time use and school enrolment size was 0.21. It would seem that the teacher time made available through economies in the provision of administrative and classroom support services was more likely to be allocated to classroom teaching rather than to increasing the amount of nondesignated time available to teachers.

The relationship between the average percentage of nondesignated time and school size was hyperbolic: the percentage rose, at a declining rate, as school size increased. However, only a small proportion of the variation between schools was explained by enrolment size. There was a very slight, negative relationship between the percentage of students enrolled in years 11 and 12 and the percentage of teacher time that was nondesignated. However, as was noted above, the reasons for the apparent relationship between the year level composition of a school and the broad categories of teacher time use require further investigation.

SPECIALISATION IN CLASS TEACHING TIME

Teachers spent an average of 14.7 hours of the standard school week of 25 hours in designated class teaching. This section focuses on the components of that class teaching time. Three aspects are considered: the number of class assignments that teachers were allocated each week; the number of different subjects that those classes comprised; and the year levels from which the classes were drawn. Each of these three aspects provides a perspective on the extent to which teachers specialised in their classroom teaching.

The Number of Teaching Class Assignments
An important influence on the number of different class assignments that teachers are allocated is the amount of teaching time designated for individual classes. Depending on the school and subject area concerned, in 1984 the classes that teachers were assigned varied in length from just one session per week (the most common session length being 50 minutes) up to 500 minutes or more per week. Across the 246 schools the
average length of a class assignment was just under 170 minutes per week.

The average number of class assignments per teacher in schools of different enrolment sizes is recorded in Table 3. On a per school basis, each teacher was allocated an average of 5.2 class assignments per week. In general, there was more within-school than between-school variation in this regard. Teachers of physical education and arts subjects tended to have a much larger number of class assignments per week than teachers in other subject areas. The pattern of curriculum organisation adopted by schools also affected the number of teachers' class assignments. For example, some schools structured parts of their junior school program around a course of integrated studies rather than separate classes in (say) history and geography. Accordingly, in those schools teachers tended to have a slightly lower number of class assignments per week. In general, though, the data in Table 3 indicate that there was little difference between schools in the average number of class assignments per teacher. There was only a very slight association between the average number of class assignments per teacher and school enrolment size (r=.05).

The limited effect of school enrolment size on the number of different classes taken is reflected in the regression analyses reported in Table 4. School size did not account for any of the variation in the average number of class assignments (at the 95 per cent confidence level). Of the other two predictor variables, it was the percentage of students enrolled in years 11 and 12 (SENIOR) that explained the largest proportion of the variation between schools. Other factors equal, each one percentage point increase in the percentage of senior students was associated with a 0.04 decline in the average number of class assignments per teacher. This finding reflects the fact that, on average, senior classes operated for a greater length of time each week than junior classes. Accordingly, teachers in schools with a relatively high proportion of senior classes tended to have fewer class assignments per week. Table 4 also indicates that, on average, teachers in disadvantaged schools were allocated about 0.3 fewer class assignments than teachers in nondisadvantaged schools. There are two possible explanations for this difference between school types. First, as reported in Table 2, teachers in disadvantaged schools tended to have a slightly lower proportion of their time allocated to class teaching. Second, the provision of classes through integrated subjects appeared to be more common in disadvantaged schools.

The Number of Different Subjects Taught by Teachers

On average, teachers' class assignments involved teaching 2.2 different subjects per week. Since teachers were allocated 5.2 class assignments per week on average, this indicated that teachers taught each subject for an average of 2.4 classes per week. As anticipated, the number of different subjects taught by teachers declined as school size increased (r=-.29). The data in Table 3 suggest that this relationship was

1 Classes in years 11 and 12 operated for 215 minutes per week on average, while those in years 7 to 10 operated for an average of 150 minutes per week.
curvilinear. As school size increased, the decline in the average number of different subjects taken was relatively rapid in the lower enrolment ranges, but then became progressively reduced. The curvilinear relationship was confirmed by the regression analyses. As is recorded in Table 4, the relationship between the average number of different subjects taught by teachers and school enrolment size was hyperbolic. This supports the hypothesis that there is an upper limit to the extent of teacher specialisation in subject teaching. School size explained only a small proportion of the variation between schools in the extent of subject specialisation.

Table 4 also indicates that, on average, teachers in disadvantaged schools taught classes in a slightly larger number of different subjects than teachers in nondisadvantaged schools of equivalent size. This reflects the finding that disadvantaged schools appeared to use some of their supplementary resources to increase the number of different they provided (McKenzie, 1989).

The Number of Different Year Levels Taught by Teachers

As Table 3 shows, teachers’ class assignments involved teaching classes from 3.5 different year levels, on average. In general, there was a negative association between the number of different year levels taught by teachers and school enrolment size ($r=−.39$). The larger the school, the fewer the number of different year levels that teachers taught, on average. Once again, this relationship was hyperbolic in nature: the rate of decline in the number of year levels taught was more rapid in the lower school enrolment range. Overall, school enrolment size account for only a relatively modest proportion of the variation between schools in the average number of year levels taught by teachers. After controlling for school enrolment size, neither school disadvantage nor the percentage of senior students appeared to account for any of the variation in the average number of different year levels taught by teachers.

DISCUSSION

The results presented in Tables 1 and 2 support the hypotheses advanced about the effects of school enrolment size on the broad categories of teacher time use. In general, large schools allocated a smaller percentage of available teacher time to the provision of administrative and classroom support services than did small schools. The apparent scale economies in the provision of these services were used to increase the percentage of teacher time allocated to class teaching in large schools and, to a lesser degree, the percentage of teachers’ nondesignated time. In accord with expectations, the data indicated that the relationship between the percentage of teacher time designated for administrative and classroom support services was curvilinear. Once schools exceeded about 800 students further declines in this percentage were relatively small.

In any analysis of government school systems it is difficult to separate
the effects of rules that determine patterns of resource allocation from what may be the 'natural' effects of school size on school operations. For example, small high schools in Victoria are allocated a relatively high proportion of teachers who held a promotion classification. Under

the industrial award, teachers with a promotion classification generally have a lower percentage of class teaching time than nonpromoted teachers. One interpretation of the allocation of promoted teachers is that it recognises the administrative needs of small schools. Another possible interpretation of the staffing schedules is that since most small schools are located in rural areas, it is necessary for them to be allocated a relatively high proportion of senior teachers as a means of attracting teachers to work in those schools. As such, the relatively high percentage of teacher time that was designated for administrative and classroom support services in small schools may be more properly considered a cost of attracting teachers to those schools rather than a reflection of scale economies in school operations.

The results reported in Tables 3 and 4 support the hypotheses advanced about the effect of school size on teacher specialisation in classroom teaching. In general, teachers in large schools taught classes in a smaller number of subjects and students from a smaller number of year levels than did teachers in small schools. In these terms, therefore, school size was associated with a higher degree of teacher specialisation. Once again, though, the proportion of the variation in teacher specialisation explained by school size was relatively small. Further, the relationship between these measures of teacher specialisation and school size were curvilinear: once schools exceeded about 600 students further increases in the extent of teacher specialisation appeared to be minor.

Further Research
Documentation of the relationship between school size and various aspects of teacher time use is a necessary but not sufficient step in establishing the existence of scale economies in school operations. The more important question is whether the (limited) advantages that school size appears to bring in these respects are translated into improved student outcomes. Teacher specialisation in subject teaching provides a case in point. Implicit much of the literature is the view that a high degree of subject specialisation amongst teachers leads to productivity gains in schools. However, there are at least three qualifications to this view. First, it is possible that school teaching tends to attract people who are interchangeable generalists rather than true specialists (Monk, 1986). To the extent that this is true the productivity losses associated with a low incidence of subject specialisation are not necessarily large. Second, it is possible that in certain circumstances teacher qualities other than subject-matter expertise are more critical determinants of student learning (see, for example, Zuzovsky, Tamir, & Chen, 1989). Finally, it has been argued that while greater functional specialisation may bring advantages in terms of individual teaching performance, it may have adverse consequences on the broader organisation of the school (Smith 1980). There have been few systematic
studies of any of these potential linkages between teacher specialisation and school productivity.

In a similar way the educational consequences of the nature of teachers' work in schools of different sizes have yet to be explored. The data presented in this paper, for example, suggest that teachers in large schools tend to spend a slightly higher percentage of the school week in class teaching. Since classes in large schools are generally larger than in small schools this implies that such teachers may have a more demanding teaching load than teachers in small schools. As a possible counter balance, however, teachers in large schools are likely to have fewer different subjects and year levels to prepare for. It is difficult to tell in advance, though, as to whether this form of specialisation is necessarily beneficial to teachers and their work. It may be that by concentrating on teaching students from a small number of subject areas and year levels teachers become more effective. Equally, it is possible that a variety of class assignments may stimulate teachers and improve intraschool communication. These issues have yet to be explored in any systematic way.

REFERENCES

Schools Commission.

Table 1 The Percentage of Total Teacher Time per School Week Designated for Class Teaching and Other Activities, by School Enrolment Size

| Average Percentage of Total |
Table 2
The Percentage of Total Teacher Time Designated for Class Teaching and Other Activities: Regression Coefficients

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Coefficient</th>
<th>Incremental R²</th>
<th>Total R²</th>
<th>F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage Designated for Administration and Classroom Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log E</td>
<td>-2.63</td>
<td>.2098</td>
<td>.2098</td>
<td>64.8</td>
</tr>
<tr>
<td>DISAD</td>
<td>1.37</td>
<td>.0305</td>
<td>.2403</td>
<td>9.8</td>
</tr>
</tbody>
</table>
Percentage Designated for Class Teaching

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0.003</td>
<td>.1160</td>
<td>.1160</td>
<td>32.0</td>
</tr>
<tr>
<td>DISAD</td>
<td>-1.5</td>
<td>.0685</td>
<td>.1845</td>
<td>20.4</td>
</tr>
<tr>
<td>SENIOR</td>
<td>-0.08</td>
<td>.0203</td>
<td>.2048</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Percentage of Nondesignated Time

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E-1</td>
<td>-438.7</td>
<td>.0854</td>
<td>.0854</td>
<td>22.8</td>
</tr>
<tr>
<td>SENIOR</td>
<td>-0.07</td>
<td>.0179</td>
<td>.1033</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Table 3 Teaching Class Assignments: The Average Number Taught by Each Teacher, and Their Subject and Year Level Composition, by School Enrolment Size

<table>
<thead>
<tr>
<th>Number of Students</th>
<th>Number of Schools</th>
<th>Different Subjects</th>
<th>Different Year Levels</th>
<th>Total Class Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>1</td>
<td>2.93</td>
<td>4.16</td>
<td>4.82</td>
</tr>
<tr>
<td>100-199</td>
<td>18</td>
<td>2.42</td>
<td>3.98</td>
<td>5.20</td>
</tr>
<tr>
<td>200-299</td>
<td>13</td>
<td>2.30</td>
<td>3.80</td>
<td>5.25</td>
</tr>
<tr>
<td>300-399</td>
<td>23</td>
<td>2.29</td>
<td>3.41</td>
<td>5.14</td>
</tr>
<tr>
<td>400-499</td>
<td>27</td>
<td>2.22</td>
<td>3.51</td>
<td>5.25</td>
</tr>
<tr>
<td>500-599</td>
<td>19</td>
<td>2.30</td>
<td>3.34</td>
<td>5.14</td>
</tr>
<tr>
<td>600-699</td>
<td>32</td>
<td>2.23</td>
<td>3.43</td>
<td>5.17</td>
</tr>
<tr>
<td>700-799</td>
<td>35</td>
<td>2.20</td>
<td>3.41</td>
<td>5.23</td>
</tr>
<tr>
<td>800-899</td>
<td>33</td>
<td>2.15</td>
<td>3.30</td>
<td>5.35</td>
</tr>
<tr>
<td>900-999</td>
<td>22</td>
<td>2.16</td>
<td>3.40</td>
<td>5.30</td>
</tr>
<tr>
<td>1000-1099</td>
<td>17</td>
<td>2.05</td>
<td>2.23</td>
<td>5.07</td>
</tr>
<tr>
<td>1100-1199</td>
<td>5</td>
<td>2.08</td>
<td>3.43</td>
<td>5.49</td>
</tr>
<tr>
<td>1200-1299</td>
<td>1</td>
<td>2.28</td>
<td>2.70</td>
<td>4.91</td>
</tr>
<tr>
<td>All schools</td>
<td>246</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mean per school: 2.22, Standard deviation: 0.29, Minimum value: 1.65, Maximum value: 3.35
<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Coefficient</th>
<th>Incremental R2</th>
<th>Total R2</th>
<th>F-Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number of Different Subjects Taught by Each Teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1</td>
<td>57.87</td>
<td>.0917</td>
<td>.0917</td>
<td>24.6</td>
</tr>
<tr>
<td>DISAD</td>
<td>0.12</td>
<td>.0246</td>
<td>.1163</td>
<td>6.8</td>
</tr>
<tr>
<td>Average Number of Different Year Levels Taught by Each Teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1</td>
<td>110.7</td>
<td>.2163</td>
<td>.2163</td>
<td>67.4</td>
</tr>
<tr>
<td>Average Number of Total Class Assignments Taught by Each Teacher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENIOR</td>
<td>-0.04</td>
<td>.1312</td>
<td>.1312</td>
<td>36.8</td>
</tr>
<tr>
<td>DISAD</td>
<td>-0.27</td>
<td>.0338</td>
<td>.1650</td>
<td>9.8</td>
</tr>
</tbody>
</table>